4x28

From Proteopedia
Jump to navigation Jump to search

Crystal structure of the ChsE4-ChsE5 complex from Mycobacterium tuberculosisCrystal structure of the ChsE4-ChsE5 complex from Mycobacterium tuberculosis

Structural highlights

4x28 is a 4 chain structure with sequence from Mycobacterium tuberculosis H37Rv. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.99Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHSE4_MYCTU Involved in the first cycle of side chain dehydrogenation in the beta-oxidation of cholesterol catabolism (PubMed:26161441). It contributes partly to the virulence by increasing the efficiency of beta-oxidation. Catalyzes the dehydrogenation of acyl-CoA ester side chains of (25S)-3-oxo-cholest-4-en-26-oyl-CoA (3-OCS-CoA) to yield (24E)-3-oxo-cholest-4,24-dien-26-oyl-CoA (PubMed:26161441, PubMed:26348625). Also able to dehydrogenate steroyl-CoA such as 3-oxo-chol-4-en-24-oyl-CoA (3-OCO-CoA) as well as 3-oxo-4-pregnene-20-carboxyl-CoA (3-OPC-CoA) (PubMed:26161441). It dehydrogenates only (25S)-OCS-CoA diastereomer (Probable).[1] [2]

Publication Abstract from PubMed

The metabolism of host cholesterol by Mycobacterium tuberculosis (Mtb) is an important factor for both its virulence and pathogenesis, although how and why cholesterol metabolism is required is not fully understood. Mtb uses a unique set of catabolic enzymes that are homologous to those required for classical beta-oxidation of fatty acids but are specific for steroid-derived substrates. Here, we identify and assign the substrate specificities of two of these enzymes, ChsE4-ChsE5 (Rv3504-Rv3505) and ChsE3 (Rv3573c), that carry out cholesterol side chain oxidation in Mtb. Steady-state assays demonstrate that ChsE4-ChsE5 preferentially catalyzes the oxidation of 3-oxo-cholest-4-en-26-oyl CoA in the first cycle of cholesterol side chain beta-oxidation that ultimately yields propionyl-CoA, whereas ChsE3 specifically catalyzes the oxidation of 3-oxo-chol-4-en-24-oyl CoA in the second cycle of beta-oxidation that generates acetyl-CoA. However, ChsE4-ChsE5 can catalyze the oxidation of 3-oxo-chol-4-en-24-oyl CoA as well as 3-oxo-4-pregnene-20-carboxyl-CoA. The functional redundancy of ChsE4-ChsE5 explains the in vivo phenotype of the igr knockout strain of Mycobacterium tuberculosis; the loss of ChsE1-ChsE2 can be compensated for by ChsE4-ChsE5 during the chronic phase of infection. The X-ray crystallographic structure of ChsE4-ChsE5 was determined to a resolution of 2.0 A and represents the first high-resolution structure of a heterotetrameric acyl-CoA dehydrogenase (ACAD). Unlike typical homotetrameric ACADs that bind four flavin adenine dinucleotide (FAD) cofactors, ChsE4-ChsE5 binds one FAD at each dimer interface, resulting in only two substrate-binding sites rather than the classical four active sites. A comparison of the ChsE4-ChsE5 substrate-binding site to those of known mammalian ACADs reveals an enlarged binding cavity that accommodates steroid substrates and highlights novel prospects for designing inhibitors against the committed beta-oxidation step in the first cycle of cholesterol side chain degradation by Mtb.

Unraveling Cholesterol Catabolism in : ChsE4-ChsE5 alphabeta Acyl-CoA Dehydrogenase Initiates beta-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA.,Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS ACS Infect Dis. 2015 Feb 13;1(2):110-125. Epub 2015 Jan 8. PMID:26161441[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS. Unraveling Cholesterol Catabolism in : ChsE4-ChsE5 alphabeta Acyl-CoA Dehydrogenase Initiates beta-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. ACS Infect Dis. 2015 Feb 13;1(2):110-125. Epub 2015 Jan 8. PMID:26161441 doi:http://dx.doi.org/10.1021/id500033m
  2. Lu R, Schmitz W, Sampson NS. α-Methyl Acyl CoA Racemase Provides Mycobacterium tuberculosis Catabolic Access to Cholesterol Esters. Biochemistry. 2015 Sep 22;54(37):5669-72. PMID:26348625 doi:10.1021/acs.biochem.5b00911
  3. Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS. Unraveling Cholesterol Catabolism in : ChsE4-ChsE5 alphabeta Acyl-CoA Dehydrogenase Initiates beta-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. ACS Infect Dis. 2015 Feb 13;1(2):110-125. Epub 2015 Jan 8. PMID:26161441 doi:http://dx.doi.org/10.1021/id500033m

4x28, resolution 1.99Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA