4ty1

From Proteopedia
Jump to navigation Jump to search

Crystal structure of human Pim-1 kinase in complex with an aminooxadiazole-indole inhibitor.Crystal structure of human Pim-1 kinase in complex with an aminooxadiazole-indole inhibitor.

Structural highlights

4ty1 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PIM1_HUMAN Proto-oncogene with serine/threonine kinase activity involved in cell survival and cell proliferation and thus providing a selective advantage in tumorigenesis. Exerts its oncogenic activity through: the regulation of MYC transcriptional activity, the regulation of cell cycle progression and by phosphorylation and inhibition of proapoptotic proteins (BAD, MAP3K5, FOXO3). Phosphorylation of MYC leads to an increase of MYC protein stability and thereby an increase of transcriptional activity. The stabilization of MYC exerted by PIM1 might explain partly the strong synergism between these two oncogenes in tumorigenesis. Mediates survival signaling through phosphorylation of BAD, which induces release of the anti-apoptotic protein Bcl-X(L)/BCL2L1. Phosphorylation of MAP3K5, an other proapoptotic protein, by PIM1, significantly decreases MAP3K5 kinase activity and inhibits MAP3K5-mediated phosphorylation of JNK and JNK/p38MAPK subsequently reducing caspase-3 activation and cell apoptosis. Stimulates cell cycle progression at the G1-S and G2-M transitions by phosphorylation of CDC25A and CDC25C. Phosphorylation of CDKN1A, a regulator of cell cycle progression at G1, results in the relocation of CDKN1A to the cytoplasm and enhanced CDKN1A protein stability. Promote cell cycle progression and tumorigenesis by down-regulating expression of a regulator of cell cycle progression, CDKN1B, at both transcriptional and post-translational levels. Phosphorylation of CDKN1B,induces 14-3-3-proteins binding, nuclear export and proteasome-dependent degradation. May affect the structure or silencing of chromatin by phosphorylating HP1 gamma/CBX3. Acts also as a regulator of homing and migration of bone marrow cells involving functional interaction with the CXCL12-CXCR4 signaling axis.[1] [2] [3] [4] [5] [6] [7]

Publication Abstract from PubMed

High levels of Pim expression have been implicated in several hematopoietic and solid tumor cancers. These findings suggest that inhibition of Pim signaling by a small molecule Pim-1,2 inhibitor could provide patients with therapeutic benefit. Herein, we describe our progress towards this goal starting from the highly Pim-selective indole-thiadiazole compound (1), which was derived from a nonselective hit identified in a high throughput screening campaign. Optimization of this compound's potency and its pharmacokinetic properties resulted in the discovery of compound 29. Cyclopropane 29 was found to exhibit excellent enzymatic potency on the Pim-1 and Pim-2 isoforms (Ki values of 0.55nM and 0.28nM, respectively), and found to inhibit the phosphorylation of BAD in the Pim-overexpressing KMS-12 cell line (IC50=150nM). This compound had moderate clearance and bioavailability in rat (CL=2.42L/kg/h; %F=24) and exhibited a dose-dependent inhibition of p-BAD in KMS-12 tumor pharmacodynamic (PD) model with an EC50 value of 6.74muM (18mug/mL) when dosed at 10, 30, 100 and 200mg/kg po in mice.

The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors.,Wurz RP, Pettus LH, Jackson C, Wu B, Wang HL, Herberich B, Cee V, Lanman BA, Reed AB, Chavez F Jr, Nixey T, Laszlo J 3rd, Wang P, Nguyen Y, Sastri C, Guerrero N, Winston J, Lipford JR, Lee MR, Andrews KL, Mohr C, Xu Y, Zhou Y, Reid DL, Tasker AS Bioorg Med Chem Lett. 2015 Feb 15;25(4):847-55. doi: 10.1016/j.bmcl.2014.12.067. , Epub 2015 Jan 7. PMID:25599837[8]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Saris CJ, Domen J, Berns A. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J. 1991 Mar;10(3):655-64. PMID:1825810
  2. Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM. Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett. 2000 Feb 4;467(1):17-21. PMID:10664448
  3. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta. 2002 Dec 16;1593(1):45-55. PMID:12431783
  4. Stout BA, Bates ME, Liu LY, Farrington NN, Bertics PJ. IL-5 and granulocyte-macrophage colony-stimulating factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3 protein expression in human eosinophils. J Immunol. 2004 Nov 15;173(10):6409-17. PMID:15528381
  5. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol. 2006 Mar;38(3):430-43. Epub 2005 Nov 8. PMID:16356754 doi:10.1016/j.biocel.2005.10.010
  6. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res. 2008 Jul 1;68(13):5076-85. doi: 10.1158/0008-5472.CAN-08-0634. PMID:18593906 doi:10.1158/0008-5472.CAN-08-0634
  7. Gu JJ, Wang Z, Reeves R, Magnuson NS. PIM1 phosphorylates and negatively regulates ASK1-mediated apoptosis. Oncogene. 2009 Dec 3;28(48):4261-71. doi: 10.1038/onc.2009.276. Epub 2009 Sep 14. PMID:19749799 doi:10.1038/onc.2009.276
  8. Wurz RP, Pettus LH, Jackson C, Wu B, Wang HL, Herberich B, Cee V, Lanman BA, Reed AB, Chavez F Jr, Nixey T, Laszlo J 3rd, Wang P, Nguyen Y, Sastri C, Guerrero N, Winston J, Lipford JR, Lee MR, Andrews KL, Mohr C, Xu Y, Zhou Y, Reid DL, Tasker AS. The discovery and optimization of aminooxadiazoles as potent Pim kinase inhibitors. Bioorg Med Chem Lett. 2015 Feb 15;25(4):847-55. doi: 10.1016/j.bmcl.2014.12.067. , Epub 2015 Jan 7. PMID:25599837 doi:http://dx.doi.org/10.1016/j.bmcl.2014.12.067

4ty1, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA