4tr6

From Proteopedia
Jump to navigation Jump to search

Crystal structure of DNA polymerase sliding clamp from Bacillus subtilisCrystal structure of DNA polymerase sliding clamp from Bacillus subtilis

Structural highlights

4tr6 is a 2 chain structure with sequence from Bacillus subtilis subsp. subtilis str. 168. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.5Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DPO3B_BACSU DNA polymerase III is a complex, multichain enzyme responsible for most of the replicative synthesis in bacteria. This DNA polymerase also exhibits 3' to 5' exonuclease activity. The beta chain is required for initiation of replication once it is clamped onto DNA, it slides freely (bidirectional and ATP-independent) along duplex DNA.

Publication Abstract from PubMed

Bacterial sliding clamps are molecular hubs that interact with many proteins involved in DNA metabolism through their binding, via a conserved peptidic sequence, into a universally conserved pocket. This interacting pocket is acknowledged as a potential molecular target for the development of new antibiotics. We previously designed short peptides with an improved affinity for the Escherichia coli binding pocket. Here we show that these peptides differentially interact with other bacterial clamps, despite the fact that all pockets are structurally similar. Thermodynamic and modeling analyses of the interactions differentiate between two categories of clamps: group I clamps interacts efficiently with our designed peptides and assembles the Escherichia coli and related orthologs clamps, while group II poorly interact with the same peptides and includes Bacillus subtilis and other Gram+ clamps. These studies also suggest that the peptide binding process could occur via different mechanisms depending on which type of clamp it binds to.

Differential Modes of Peptide Binding onto Replicative Sliding Clamps from Various Bacterial Origins.,Wolff P, Amal I, Olieric V, Chaloin O, Gygli G, Ennifar E, Lorber B, Guichard G, Wagner JE, Dejaegere A, Burnouf DY J Med Chem. 2014 Aug 29. PMID:25170813[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wolff P, Amal I, Olieric V, Chaloin O, Gygli G, Ennifar E, Lorber B, Guichard G, Wagner JE, Dejaegere A, Burnouf DY. Differential Modes of Peptide Binding onto Replicative Sliding Clamps from Various Bacterial Origins. J Med Chem. 2014 Aug 29. PMID:25170813 doi:http://dx.doi.org/10.1021/jm500467a

4tr6, resolution 1.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA