4tl1

From Proteopedia
Jump to navigation Jump to search

GCN4-p1 with mutation to 1-Aminocyclohexanecarboxylic acid at residue 10GCN4-p1 with mutation to 1-Aminocyclohexanecarboxylic acid at residue 10

Structural highlights

4tl1 is a 2 chain structure with sequence from Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GCN4_YEAST Is a transcription factor that is responsible for the activation of more than 30 genes required for amino acid or for purine biosynthesis in response to amino acid or purine starvation. Binds and recognize the DNA sequence: 5'-TGA[CG]TCA-3'.

Publication Abstract from PubMed

Modular assembly of bio-inspired supramolecular polymers is a powerful technique to develop new soft nanomaterials, and protein folding is a versatile basis for preparing such materials. Previous work demonstrated a significant difference in the physical properties of closely related supramolecular polymers composed of building blocks in which identical coiled-coil forming peptides are cross-linked by one of two subtly different organic linkers (one flexible and the other rigid). Herein, we investigate the molecular basis for this observation by isolating a single subunit of the supramolecular polymer chain and probing its structure and conformational flexibility by double electron-electron resonance (DEER) spectroscopy. Experimental spin-spin distance distributions for two different labeling sites coupled with molecular dynamics simulations provide insights into how linker structure impacts chain dynamics in the coiled-coil supramolecular polymer.

Origins of Structural Flexibility in Protein-Based Supramolecular Polymers Revealed by DEER Spectroscopy.,Tavenor NA, Silva KI, Saxena S, Horne WS J Phys Chem B. 2014 Jul 24. PMID:25060334[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tavenor NA, Silva KI, Saxena S, Horne WS. Origins of Structural Flexibility in Protein-Based Supramolecular Polymers Revealed by DEER Spectroscopy. J Phys Chem B. 2014 Jul 24. PMID:25060334 doi:http://dx.doi.org/10.1021/jp505643w

4tl1, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA