4nxg
Crystal structure of iLOV-I486z(2LT) at pH 9.0Crystal structure of iLOV-I486z(2LT) at pH 9.0
Structural highlights
FunctionPHOT2_ARATH Protein kinase that acts as a blue light photoreceptor in a signal-transduction pathway for photo-induced movements. Mediates calcium spiking of extra- and intracellular origins in response to blue light. Involved in hypocotyl phototropism. Contributes to the chloroplast accumulation in low blue light and mediates their translocation (avoidance response) at high fluence. Regulates stomata opening and photomorphogenesis response of leaf tissue. Not involved in hypocotyl elongation inhibition, anthocyanin accumulation or cotyledon opening.[1] [2] [3] [4] [5] Publication Abstract from PubMedPhoto-induced electron transfer (PET) is ubiquitous for photosynthesis and fluorescent sensor design. However, genetically coded PET sensors are underdeveloped, due to the lack of methods to site-specifically install PET probes on proteins. Here we describe a family of acid and Mn(III) turn-on fluorescent protein (FP) sensors, named iLovU, based on PET and the genetic incorporation of superior PET quenchers in the fluorescent flavoprotein iLov. Using the iLovU PET sensors, we monitored the cytoplasmic acidification process, and achieved Mn(III) fluorescence sensing for the first time. The iLovU sensors should be applicable for studying pH changes in living cells, monitoring biogentic Mn(III) in the environment, and screening for efficient manganese peroxidase, which is highly desirable for lignin degradation and biomass conversion. Our work establishes a platform for many more protein PET sensors, facilitates the de novo design of metalloenzymes harboring redox active residues, and expands our ability to probe protein conformational dynamics. Significant Expansion of Fluorescent Protein Sensing Ability through the Genetic Incorporation of Superior Photo-Induced Electron-Transfer Quenchers.,Liu X, Jiang L, Li J, Wang L, Yu Y, Zhou Q, Lv X, Gong W, Lu Y, Wang J J Am Chem Soc. 2014 Sep 10. PMID:25197956[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|