4mix

From Proteopedia
Jump to navigation Jump to search

PaToxG GlycosyltransferasePaToxG Glycosyltransferase

Structural highlights

4mix is a 2 chain structure with sequence from Photorhabdus asymbiotica subsp. asymbiotica ATCC 43949. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PATOX_PHOAA Toxin that acts on host cells by modifying Rho proteins by tyrosine GlcNAcylation and heterotrimeric G alpha proteins by deamidation. Catalyzes the mono-O-GlcNAcylation of small GTPases of the Rho family (RhoA, RhoB, RhoC, Rac1, Rac2, Rac3, Cdc42) in eukaryotic host cells at the conserved tyrosine residue located in the switch I region (Tyr-32/34), using UDP-N-acetylglucosamine (UDP-GlcNAc) as the sugar donor; other GTPases of the Rho, Ras or Rab families are not substrates. Tyrosine glycosylation inhibits Rho activation and prevents interaction with downstream effectors, resulting in actin disassembly, inhibition of phagocytosis, cell rounding, and toxicity toward insects and mammalian cells. Also catalyzes the deamidation of the catalytic glutamine in heterotrimeric G alpha proteins (Gi, Gq/11), which blocks GTP hydrolysis and arrests the G proteins in a permanent active state leading to activation of Rho GTPases. Thus, PaTox hijacks host GTPase signaling in a bidirectional manner by deamidation-induced activation and glycosylation-induced inactivation of GTPases.[1]

Publication Abstract from PubMed

Entomopathogenic Photorhabdus asymbiotica is an emerging pathogen in humans. Here, we identified a P. asymbiotica protein toxin (PaTox), which contains a glycosyltransferase and a deamidase domain. PaTox mono-O-glycosylates Y32 (or Y34) of eukaryotic Rho GTPases by using UDP-N-acetylglucosamine (UDP-GlcNAc). Tyrosine glycosylation inhibits Rho activation and prevents interaction with downstream effectors, resulting in actin disassembly, inhibition of phagocytosis and toxicity toward insects and mammalian cells. The crystal structure of the PaTox glycosyltransferase domain in complex with UDP-GlcNAc determined at 1.8-A resolution represents a canonical GT-A fold and is the smallest glycosyltransferase toxin known. 1H-NMR analysis identifies PaTox as a retaining glycosyltransferase. The glutamine-deamidase domain of PaTox blocks GTP hydrolysis of heterotrimeric Galphaq/11 and Galphai proteins, thereby activating RhoA. Thus, PaTox hijacks host GTPase signaling in a bidirectional manner by deamidation-induced activation and glycosylation-induced inactivation of GTPases.

A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of G and G proteins.,Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE, Steinemann M, Orth JH, Kalbitzer HR, Warscheid B, Hunte C, Aktories K Nat Struct Mol Biol. 2013 Oct 20. doi: 10.1038/nsmb.2688. PMID:24141704[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE, Steinemann M, Orth JH, Kalbitzer HR, Warscheid B, Hunte C, Aktories K. A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of G and G proteins. Nat Struct Mol Biol. 2013 Oct 20. doi: 10.1038/nsmb.2688. PMID:24141704 doi:http://dx.doi.org/10.1038/nsmb.2688
  2. Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE, Steinemann M, Orth JH, Kalbitzer HR, Warscheid B, Hunte C, Aktories K. A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of G and G proteins. Nat Struct Mol Biol. 2013 Oct 20. doi: 10.1038/nsmb.2688. PMID:24141704 doi:http://dx.doi.org/10.1038/nsmb.2688

4mix, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA