4m9r

From Proteopedia
Jump to navigation Jump to search

Crystal structure of CED-3Crystal structure of CED-3

Structural highlights

4m9r is a 2 chain structure with sequence from Caenorhabditis elegans. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.656Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CED3_CAEEL Acts as a cysteine protease in controlling programmed cell death by proteolytically activating or inactivating a substrate protein or proteins, a potential substrate may be ced-4. Alternatively it might directly cause cell death by proteolytically cleaving proteins that are crucial for cell viability.

Publication Abstract from PubMed

Programmed cell death in Caenorhabditis elegans requires activation of the caspase CED-3, which strictly depends on CED-4. CED-4 forms an octameric apoptosome, which binds the CED-3 zymogen and facilitates its autocatalytic maturation. Despite recent advances, major questions remain unanswered. Importantly, how CED-4 recognizes CED-3 and how such binding facilitates CED-3 activation remain completely unknown. Here we demonstrate that the L2' loop of CED-3 directly binds CED-4 and plays a major role in the formation of an active CED-4-CED-3 holoenzyme. The crystal structure of the CED-4 apoptosome bound to the L2' loop fragment of CED-3, determined at 3.2 A resolution, reveals specific interactions between a stretch of five hydrophobic amino acids from CED-3 and a shallow surface pocket within the hutch of the funnel-shaped CED-4 apoptosome. Structure-guided biochemical analysis confirms the functional importance of the observed CED-4-CED-3 interface. Structural analysis together with published evidence strongly suggest a working model in which two molecules of CED-3 zymogen, through specific recognition, are forced into the hutch of the CED-4 apoptosome, consequently undergoing dimerization and autocatalytic maturation. The mechanism of CED-3 activation represents a major revision of the prevailing model for initiator caspase activation.

Mechanistic insights into CED-4-mediated activation of CED-3.,Huang W, Jiang T, Choi W, Qi S, Pang Y, Hu Q, Xu Y, Gong X, Jeffrey PD, Wang J, Shi Y Genes Dev. 2013 Sep 15;27(18):2039-48. doi: 10.1101/gad.224428.113. PMID:24065769[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Huang W, Jiang T, Choi W, Qi S, Pang Y, Hu Q, Xu Y, Gong X, Jeffrey PD, Wang J, Shi Y. Mechanistic insights into CED-4-mediated activation of CED-3. Genes Dev. 2013 Sep 15;27(18):2039-48. doi: 10.1101/gad.224428.113. PMID:24065769 doi:http://dx.doi.org/10.1101/gad.224428.113

4m9r, resolution 2.66Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA