4lym

From Proteopedia
Jump to navigation Jump to search

CRYSTAL STRUCTURE OF LOW HUMIDITY TETRAGONAL LYSOZYME AT 2.1-ANGSTROMS RESOLUTION. VARIABILITY IN HYDRATION SHELL AND ITS STRUCTURAL CONSEQUENCESCRYSTAL STRUCTURE OF LOW HUMIDITY TETRAGONAL LYSOZYME AT 2.1-ANGSTROMS RESOLUTION. VARIABILITY IN HYDRATION SHELL AND ITS STRUCTURAL CONSEQUENCES

Structural highlights

4lym is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Tetragonal crystals of hen egg white lysozyme undergo a reversible transformation, accompanied by loss of water, when the relative humidity of the environment is reduced to about 90%. The structure of the low humidity form has been analyzed, using x-ray data collected at 88% relative humidity, in order to explore the variability in protein hydration caused by a change in the amount of water surrounding the protein molecule and the consequent conformational perturbations in the molecule. The structure has been refined by the restrained least-squares method to an R value of 0.162 for 6269 observed reflections in the 10-2.1-A resolution shell. The refined structure provides interesting examples for the variability in helical parameters, the role of interactions involving side chains and water in the stabilization of secondary structural features, and favorable specific hydration sites. The protein molecule as a whole moves slightly in the low humidity form from its position in the native crystals. The hydration shell tends to move along with the protein. Significant changes, however, occur in the hydration shell. These changes cause structural perturbations in the enzyme molecule, which are most pronounced in regions involved in substrate binding.

Crystal structure of low humidity tetragonal lysozyme at 2.1-A resolution. Variability in hydration shell and its structural consequences.,Kodandapani R, Suresh CG, Vijayan M J Biol Chem. 1990 Sep 25;265(27):16126-31. PMID:2398048[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Kodandapani R, Suresh CG, Vijayan M. Crystal structure of low humidity tetragonal lysozyme at 2.1-A resolution. Variability in hydration shell and its structural consequences. J Biol Chem. 1990 Sep 25;265(27):16126-31. PMID:2398048

4lym, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA