4lsc
Isolated SERK1 co-receptor ectodomain at high resolutionIsolated SERK1 co-receptor ectodomain at high resolution
Structural highlights
FunctionSERK1_ARATH Dual specificity kinase acting on both serine/threonine- and tyrosine-containing substrates. Phosphorylates BRI1 on 'Ser-887' and CDC48 on at least one threonine residue and on 'Ser-41'. Confers embryogenic competence. Acts redundantly with SERK2 as a control point for sporophytic development controlling male gametophyte production. Involved in the brassinolide signaling pathway.[1] [2] Publication Abstract from PubMedBrassinosteroids, which control plant growth and development, are sensed by the leucine-rich repeat (LRR) domain of the membrane receptor kinase BRASSINOSTEROID INSENSITIVE 1 (BRI1), but it is unknown how steroid binding at the cell surface activates the cytoplasmic kinase domain of the receptor. A family of somatic embryogenesis receptor kinases (SERKs) has been genetically implicated in mediating early brassinosteroid signaling events. We found a direct and steroid-dependent interaction between the BRI1 and SERK1 LRR domains by analysis of their complex crystal structure at 3.3 angstrom resolution. We show that the SERK1 LRR domain is involved in steroid sensing and, through receptor-co-receptor heteromerization, in the activation of the BRI1 signaling pathway. Our work reveals how known missense mutations in BRI1 and in SERKs modulate brassinosteroid signaling and the targeting mechanism of BRI1 receptor antagonists. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases.,Santiago J, Henzler C, Hothorn M Science. 2013 Aug 23;341(6148):889-92. doi: 10.1126/science.1242468. Epub 2013, Aug 8. PMID:23929946[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|