4l9i

From Proteopedia
Jump to navigation Jump to search

Bovine G Protein Coupled Receptor Kinase 1 in Complex with ParoxetineBovine G Protein Coupled Receptor Kinase 1 in Complex with Paroxetine

Structural highlights

4l9i is a 2 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.32Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GRK1_BOVIN Retina-specific kinase involved in the signal turnoff via phosphorylation of rhodopsin (RHO), the G protein- coupled receptor that initiates the phototransduction cascade (PubMed:12686556, PubMed:16675451, PubMed:21299498). This rapid desensitization is essential for scotopic vision and permits rapid adaptation to changes in illumination (By similarity). May play a role in the maintenance of the outer nuclear layer in the retina (By similarity).[UniProtKB:Q9WVL4][1] [2] [3]

Publication Abstract from PubMed

Recently we identified the serotonin reuptake inhibitor paroxetine as an inhibitor of G protein-coupled receptor kinase 2 (GRK2) that improves cardiac performance in live animals. Paroxetine exhibits up to 50-fold selectivity for GRK2 versus other GRKs. A better understanding of the molecular basis of this selectivity is important for the development of even more selective and potent small molecule therapeutics and chemical genetic probes. We first sought to understand the molecular mechanisms underlying paroxetine selectivity among GRKs. We directly measured the KD for paroxetine and assessed its mechanism of inhibition for each of the GRK subfamilies and then determined the atomic structure of its complex with GRK1, the most weakly inhibited GRK tested. Our results suggest that the selectivity of paroxetine for GRK2 largely reflects its lower affinity for adenine nucleotides. Thus, stabilization of off-pathway conformational states unique to GRK2 will likely be key for the development of even more selective inhibitors. Next, we designed a benzolactam derivative of paroxetine that has optimized interactions with the hinge of the GRK2 kinase domain. The crystal structure of this compound in complex with GRK2 confirmed the predicted interactions. Although the benzolactam derivative did not significantly alter potency of inhibition among GRKs, it exhibited 20-fold lower inhibition of serotonin reuptake. However, there was an associated increase in the potency for inhibition of other AGC kinases, suggesting that the unconventional hydrogen bond formed by the benzodioxole ring of paroxetine is better accommodated by GRKs.

Structural and functional analysis of g protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog.,Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJ Mol Pharmacol. 2014 Feb;85(2):237-48. doi: 10.1124/mol.113.089631. Epub 2013 Nov , 12. PMID:24220010[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Weiergraber OH, Senin II, Philippov PP, Granzin J, Koch KW. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J Biol Chem. 2003 Jun 20;278(25):22972-9. Epub 2003 Apr 9. PMID:12686556 doi:10.1074/jbc.M300447200
  2. Higgins MK, Oprian DD, Schertler GF. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem. 2006 Jul 14;281(28):19426-32. doi: 10.1074/jbc.M602203200. Epub 2006 , May 4. PMID:16675451 doi:http://dx.doi.org/10.1074/jbc.M602203200
  3. Zernii EY, Komolov KE, Permyakov SE, Kolpakova T, Dell'orco D, Poetzsch A, Knyazeva EL, Grigoriev II, Permyakov EA, Senin II, Philippov PP, Koch KW. Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochem J. 2011 Apr 15;435(2):441-50. doi: 10.1042/BJ20110013. PMID:21299498 doi:http://dx.doi.org/10.1042/BJ20110013
  4. Homan KT, Wu E, Wilson MW, Singh P, Larsen SD, Tesmer JJ. Structural and functional analysis of g protein-coupled receptor kinase inhibition by paroxetine and a rationally designed analog. Mol Pharmacol. 2014 Feb;85(2):237-48. doi: 10.1124/mol.113.089631. Epub 2013 Nov , 12. PMID:24220010 doi:http://dx.doi.org/10.1124/mol.113.089631

4l9i, resolution 2.32Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA