4iap

From Proteopedia
Jump to navigation Jump to search

Crystal structure of PH domain of Osh3 from Saccharomyces cerevisiaeCrystal structure of PH domain of Osh3 from Saccharomyces cerevisiae

Structural highlights

4iap is a 2 chain structure with sequence from Escherichia virus T4 and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1] OSH3_YEAST

Publication Abstract from PubMed

The oxysterol-binding protein (OSBP)-related proteins (ORPs) are conserved from yeast to humans, and implicated in the regulation of lipid homeostasis and in signaling pathways. Saccharomyces cerevisiae has seven ORPs (Osh1-Osh7) that share one unknown essential function. Here, we report the 1.5-2.3 A structures of the PH domain and ORD (OSBP-related domain) of yeast Osh3 in apo-form or in complex with phosphatidylinositol 4-phosphate (PI[4]P). Osh3 recognizes PI(4)P by the highly conserved residues in the tunnel of ORD whereas it lacks sterol binding due to the narrow hydrophobic tunnel. Yeast complementation tests suggest that PI(4)P binding to PH and ORD is essential for function. This study suggests that the unifying feature in all ORP homologs is the binding of PI(4)P to ORD and sterol binding is additional to certain homologs. Structural modeling of full-length Osh3 is consistent with the concept that Osh3 is a lipid transfer protein or regulator in membrane contact sites.

Structure of osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins.,Tong J, Yang H, Yang H, Eom SH, Im YJ Structure. 2013 Jul 2;21(7):1203-13. doi: 10.1016/j.str.2013.05.007. Epub 2013, Jun 20. PMID:23791945[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
  2. Tong J, Yang H, Yang H, Eom SH, Im YJ. Structure of osh3 reveals a conserved mode of phosphoinositide binding in oxysterol-binding proteins. Structure. 2013 Jul 2;21(7):1203-13. doi: 10.1016/j.str.2013.05.007. Epub 2013, Jun 20. PMID:23791945 doi:10.1016/j.str.2013.05.007

4iap, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA