4ia9

From Proteopedia
Jump to navigation Jump to search

Crystal structure of human WD REPEAT DOMAIN 5 in complex with 2-chloro-4-fluoro-3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-nitrophenyl]benzamideCrystal structure of human WD REPEAT DOMAIN 5 in complex with 2-chloro-4-fluoro-3-methyl-N-[2-(4-methylpiperazin-1-yl)-5-nitrophenyl]benzamide

Structural highlights

4ia9 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.66Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

WDR5_HUMAN Contributes to histone modification. May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4'. As part of the MLL1/MLL complex it is involved in methylation and dimethylation at 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. As part of the NSL complex it may be involved in acetylation of nucleosomal histone H4 on several lysine residues. May regulate osteoblasts differentiation.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

The WD40-repeat protein WDR5 plays a critical role in maintaining the integrity of MLL complexes and fully activating their methyltransferase function. MLL complexes, the trithorax-like family of SET1 methyltransferases, catalyze trimethylation of lysine 4 on histone 3, and they have been widely implicated in various cancers. Antagonism of WDR5 and MLL subunit interaction by small molecules has recently been presented as a practical way to inhibit activity of the MLL1 complex, and N-(2-(4-methylpiperazin-1-yl)-5-substituted-phenyl) benzamides were reported as potent and selective antagonists of such an interaction. Here, we describe the protein crystal structure guided optimization of prototypic compound 2 (K dis = 7 muM), leading to identification of more potent antagonist 47 (K dis = 0.3 muM).

Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5-MLL Interaction.,Bolshan Y, Getlik M, Kuznetsova E, Wasney GA, Hajian T, Poda G, Nguyen KT, Wu H, Dombrovski L, Dong A, Senisterra G, Schapira M, Arrowsmith CH, Brown PJ, Al-Awar R, Vedadi M, Smil D ACS Med Chem Lett. 2013 Feb 4;4(3):353-7. doi: 10.1021/ml300467n. eCollection, 2013 Mar 14. PMID:24900672[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. J Biol Chem. 2009 Sep 4;284(36):24242-56. Epub 2009 Jun 25. PMID:19556245 doi:M109.014498
  2. Guelman S, Kozuka K, Mao Y, Pham V, Solloway MJ, Wang J, Wu J, Lill JR, Zha J. The double-histone-acetyltransferase complex ATAC is essential for mammalian development. Mol Cell Biol. 2009 Mar;29(5):1176-88. doi: 10.1128/MCB.01599-08. Epub 2008 Dec, 22. PMID:19103755 doi:10.1128/MCB.01599-08
  3. Cai Y, Jin J, Swanson SK, Cole MD, Choi SH, Florens L, Washburn MP, Conaway JW, Conaway RC. Subunit composition and substrate specificity of a MOF-containing histone acetyltransferase distinct from the male-specific lethal (MSL) complex. J Biol Chem. 2010 Feb 12;285(7):4268-72. doi: 10.1074/jbc.C109.087981. Epub 2009 , Dec 14. PMID:20018852 doi:10.1074/jbc.C109.087981
  4. Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006 Apr 7;22(1):137-44. PMID:16600877 doi:10.1016/j.molcel.2006.03.018
  5. Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol. 2006 Aug;13(8):698-703. Epub 2006 Jul 9. PMID:16829960 doi:10.1038/nsmb1116
  6. Bolshan Y, Getlik M, Kuznetsova E, Wasney GA, Hajian T, Poda G, Nguyen KT, Wu H, Dombrovski L, Dong A, Senisterra G, Schapira M, Arrowsmith CH, Brown PJ, Al-Awar R, Vedadi M, Smil D. Synthesis, Optimization, and Evaluation of Novel Small Molecules as Antagonists of WDR5-MLL Interaction. ACS Med Chem Lett. 2013 Feb 4;4(3):353-7. doi: 10.1021/ml300467n. eCollection, 2013 Mar 14. PMID:24900672 doi:http://dx.doi.org/10.1021/ml300467n

4ia9, resolution 1.66Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA