4all

From Proteopedia
Jump to navigation Jump to search

Crystal structure of S. aureus FabI in complex with NADP and triclosan (P212121)Crystal structure of S. aureus FabI in complex with NADP and triclosan (P212121)

Structural highlights

4all is a 4 chain structure with sequence from Staphylococcus aureus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

A0A0H3JLH9_STAAN

Publication Abstract from PubMed

Methicillin-resistant Staphylococcus aureus (MRSA) infections constitute a serious health threat worldwide, and novel antibiotics are therefore urgently needed. The enoyl-ACP reductase (saFabI) is essential for the S. aureus fatty acid biosynthesis and, hence, serves as an attractive drug target. We have obtained a series of snapshots of this enzyme that provide a mechanistic picture of ligand and inhibitor binding, including a dimer-tetramer transition combined with extensive conformational changes. Significantly, our results reveal key differences in ligand binding and recognition compared to orthologous proteins. The remarkable observed protein flexibility rationalizes our finding that saFabI is capable of efficiently reducing branched-chain fatty acid precursors. Importantly, branched-chain fatty acids represent a major fraction of the S. aureus cell membrane and are crucial for its in vivo fitness. Our discovery thus addresses a long-standing controversy regarding the essentiality of the fatty acid biosynthesis pathway in S. aureus rationalizing saFabI as a drug target.

Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality.,Schiebel J, Chang A, Lu H, Baxter MV, Tonge PJ, Kisker C Structure. 2012 May 9;20(5):802-13. PMID:22579249[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schiebel J, Chang A, Lu H, Baxter MV, Tonge PJ, Kisker C. Staphylococcus aureus FabI: Inhibition, Substrate Recognition, and Potential Implications for In Vivo Essentiality. Structure. 2012 May 9;20(5):802-13. PMID:22579249 doi:10.1016/j.str.2012.03.013

4all, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA