3zo8

From Proteopedia
Jump to navigation Jump to search

Wild-type chorismate mutase of Bacillus subtilis at 1.6 A resolutionWild-type chorismate mutase of Bacillus subtilis at 1.6 A resolution

Structural highlights

3zo8 is a 6 chain structure with sequence from Bacillus subtilis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.59Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AROH_BACSU Catalyzes the Claisen rearrangement of chorismate to prephenate. Probably involved in the aromatic amino acid biosynthesis.[1]

Publication Abstract from PubMed

For more than half a century, transition state theory has provided a useful framework for understanding the origins of enzyme catalysis. As proposed by Pauling, enzymes accelerate chemical reactions by binding transition states tighter than substrates, thereby lowering the activation energy compared with that of the corresponding uncatalyzed process. This paradigm has been challenged for chorismate mutase (CM), a well-characterized metabolic enzyme that catalyzes the rearrangement of chorismate to prephenate. Calculations have predicted the decisive factor in CM catalysis to be ground state destabilization rather than transition state stabilization. Using X-ray crystallography, we show, in contrast, that a sluggish variant of Bacillus subtilis CM, in which a cationic active-site arginine was replaced by a neutral citrulline, is a poor catalyst even though it effectively preorganizes chorismate for the reaction. A series of high-resolution molecular snapshots of the reaction coordinate, including the apo enzyme, and complexes with substrate, transition state analog and product, demonstrate that an active site, which is only complementary in shape to a reactive substrate conformer, is insufficient for effective catalysis. Instead, as with other enzymes, electrostatic stabilization of the CM transition state appears to be crucial for achieving high reaction rates.

Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis.,Burschowsky D, van Eerde A, Okvist M, Kienhofer A, Kast P, Hilvert D, Krengel U Proc Natl Acad Sci U S A. 2014 Nov 24. pii: 201408512. PMID:25422475[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gray JV, Golinelli-Pimpaneau B, Knowles JR. Monofunctional chorismate mutase from Bacillus subtilis: purification of the protein, molecular cloning of the gene, and overexpression of the gene product in Escherichia coli. Biochemistry. 1990 Jan 16;29(2):376-83. PMID:2105742
  2. Burschowsky D, van Eerde A, Okvist M, Kienhofer A, Kast P, Hilvert D, Krengel U. Electrostatic transition state stabilization rather than reactant destabilization provides the chemical basis for efficient chorismate mutase catalysis. Proc Natl Acad Sci U S A. 2014 Nov 24. pii: 201408512. PMID:25422475 doi:http://dx.doi.org/10.1073/pnas.1408512111

3zo8, resolution 1.59Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA