3whl

From Proteopedia
Jump to navigation Jump to search

Crystal structure of Nas2 N-terminal domain complexed with PAN-Rpt5C chimeraCrystal structure of Nas2 N-terminal domain complexed with PAN-Rpt5C chimera

Structural highlights

3whl is a 8 chain structure with sequence from Pyrococcus furiosus DSM 3638 and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 4Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PRS6A_YEAST The 26S protease is involved in the ATP-dependent degradation of ubiquitinated proteins. The regulatory (or ATPase) complex confers ATP dependency and substrate specificity to the 26S complex (By similarity).PAN_PYRFU ATPase which is responsible for recognizing, binding, unfolding and translocation of substrate proteins into the archaeal 20S proteasome core particle. Is essential for opening the gate of the 20S proteasome via an interaction with its C-terminus, thereby allowing substrate entry and access to the site of proteolysis. Thus, the C-termini of the proteasomal ATPase function like a 'key in a lock' to induce gate opening and therefore regulate proteolysis. Unfolding activity requires energy from ATP hydrolysis, whereas ATP binding alone promotes ATPase-20S proteasome association which triggers gate opening, and supports translocation of unfolded substrates (By similarity).

Publication Abstract from PubMed

Proteasome formation does not occur due to spontaneous self-organization but results from a highly ordered process assisted by several assembly chaperones. The assembly of the proteasome ATPase subunits is assisted by four client-specific chaperones, of which three have been structurally resolved. Here, we provide the structural basis for the working mechanisms of the last, hereto structurally uncharacterized assembly chaperone, Nas2. We revealed that Nas2 binds to the Rpt5 subunit in a bivalent mode: the N-terminal helical domain of Nas2 masks the Rpt1-interacting surface of Rpt5, whereas its C-terminal PDZ domain caps the C-terminal proteasome-activating motif. Thus, Nas2 operates as a proteasome activation blocker, offering a checkpoint during the formation of the 19S ATPase prior to its docking onto the proteolytic 20S core particle.

Structural Basis for Proteasome Formation Controlled by an Assembly Chaperone Nas2.,Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K Structure. 2014 Mar 25. pii: S0969-2126(14)00070-7. doi:, 10.1016/j.str.2014.02.014. PMID:24685148[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Satoh T, Saeki Y, Hiromoto T, Wang YH, Uekusa Y, Yagi H, Yoshihara H, Yagi-Utsumi M, Mizushima T, Tanaka K, Kato K. Structural Basis for Proteasome Formation Controlled by an Assembly Chaperone Nas2. Structure. 2014 Mar 25. pii: S0969-2126(14)00070-7. doi:, 10.1016/j.str.2014.02.014. PMID:24685148 doi:http://dx.doi.org/10.1016/j.str.2014.02.014

3whl, resolution 4.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA