3wg5

From Proteopedia
Jump to navigation Jump to search

1510-N membrane-bound stomatin-specific protease K138A mutant in complex with a substrate peptide under heat treatment1510-N membrane-bound stomatin-specific protease K138A mutant in complex with a substrate peptide under heat treatment

Structural highlights

3wg5 is a 3 chain structure with sequence from Pyrococcus horikoshii OT3. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STOPP_PYRHO Protease that cleaves its substrates preferentially near hydrophobic or aromatic amino acid residues. Can degrade casein and the stomatin homolog PH1511 (in vitro).[1] [2] [3]

Publication Abstract from PubMed

Membrane-bound proteases are involved in various regulatory functions. The N-terminal region of PH1510p (1510-N) from the hyperthermophilic archaeon Pyrococcus horikoshii is a serine protease with a catalytic Ser-Lys dyad (Ser97 and Lys138), and specifically cleaves the C-terminal hydrophobic region of the p-stomatin PH1511p. In a form of human hemolytic anemia known as hereditary stomatocytosis, the stomatin protein is deficient in the erythrocyte membrane due to mis-trafficking. In order to understand the catalytic mechanism of 1510-N in more detail, here the structural and biochemical analysis of 1510-N is reported. Two degraded products were produced via acyl-enzyme intermediates. 1510-N is a thermostable protease, and thus crystallization after heat treatment of the protease-peptide complex was attempted in order to understand the catalytic mechanism of 1510-N. The structure after heat treatment is almost identical to that with no heat treatment. According to the superposition between the structures with heat treatment and with no heat treatment, the N-terminal half of the peptide is superposed well, whereas the C-terminal half of the peptide is slightly deviated. The N-terminal half of the peptide binds to 1510-N more tightly than the C-terminal half of the peptide. The flexible L2 loops of 1510-N cover the peptide, and are involved in the protease activity.

Structural and biochemical analysis of a thermostable membrane-bound stomatin-specific protease.,Yokoyama H, Kobayashi D, Takizawa N, Fujii S, Matsui I J Synchrotron Radiat. 2013 Nov;20(Pt 6):933-7. doi: 10.1107/S0909049513021328., Epub 2013 Sep 25. PMID:24121343[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Yokoyama H, Matsui I. A novel thermostable membrane protease forming an operon with a stomatin homolog from the hyperthermophilic archaebacterium Pyrococcus horikoshii. J Biol Chem. 2005 Feb 25;280(8):6588-94. Epub 2004 Dec 16. PMID:15611110 doi:10.1074/jbc.M411748200
  2. Yokoyama H, Matsui E, Akiba T, Harata K, Matsui I. Molecular structure of a novel membrane protease specific for a stomatin homolog from the hyperthermophilic archaeon Pyrococcus horikoshii. J Mol Biol. 2006 May 12;358(4):1152-64. Epub 2006 Mar 9. PMID:16574150 doi:10.1016/j.jmb.2006.02.052
  3. Yokoyama H, Kobayashi D, Takizawa N, Fujii S, Matsui I. Structural and biochemical analysis of a thermostable membrane-bound stomatin-specific protease. J Synchrotron Radiat. 2013 Nov;20(Pt 6):933-7. doi: 10.1107/S0909049513021328., Epub 2013 Sep 25. PMID:24121343 doi:http://dx.doi.org/10.1107/S0909049513021328
  4. Yokoyama H, Kobayashi D, Takizawa N, Fujii S, Matsui I. Structural and biochemical analysis of a thermostable membrane-bound stomatin-specific protease. J Synchrotron Radiat. 2013 Nov;20(Pt 6):933-7. doi: 10.1107/S0909049513021328., Epub 2013 Sep 25. PMID:24121343 doi:http://dx.doi.org/10.1107/S0909049513021328

3wg5, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA