3og5

From Proteopedia
Jump to navigation Jump to search

Crystal Structure of BamA POTRA45 tandemCrystal Structure of BamA POTRA45 tandem

Structural highlights

3og5 is a 2 chain structure with sequence from Escherichia coli K-12. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.69Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BAMA_ECOLI Part of the outer membrane protein assembly complex, which is involved in assembly and insertion of beta-barrel proteins into the outer membrane. Constitutes, with BamD, the core component of the assembly machinery.[1] [2] [3] [4] [5]

Publication Abstract from PubMed

Folding and insertion of beta-barrel outer membrane proteins (OMPs) is essential for Gram-negative bacteria. This process is mediated by the multiprotein complex BAM, composed of the essential beta-barrel OMP BamA and four lipoproteins (BamBCDE). The periplasmic domain of BamA is key for its function and contains five "polypeptide transport-associated" (POTRA) repeats. Here, we report the crystal structure of the POTRA4-5 tandem, containing the essential for BAM complex formation and cell viability POTRA5. The domain orientation observed in the crystal is validated by solution NMR and SAXS. Using previously determined structures of BamA POTRA1-4, we present a spliced model of the entire BamA periplasmic domain validated by SAXS. Solution scattering shows that conformational flexibility between POTRA2 and 3 gives rise to compact and extended conformations. The length of BamA in its extended conformation suggests that the protein may bridge the inner and outer membranes across the periplasmic space.

Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane.,Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC Structure. 2010 Nov 10;18(11):1492-501. PMID:21070948[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Doerrler WT, Raetz CR. Loss of outer membrane proteins without inhibition of lipid export in an Escherichia coli YaeT mutant. J Biol Chem. 2005 Jul 29;280(30):27679-87. Epub 2005 Jun 10. PMID:15951436 doi:http://dx.doi.org/M504796200
  2. Werner J, Misra R. YaeT (Omp85) affects the assembly of lipid-dependent and lipid-independent outer membrane proteins of Escherichia coli. Mol Microbiol. 2005 Sep;57(5):1450-9. PMID:16102012 doi:http://dx.doi.org/MMI4775
  3. Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D, Misra R, Silhavy TJ. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol. 2006 Jul;61(1):151-64. PMID:16824102 doi:http://dx.doi.org/10.1111/j.1365-2958.2006.05211.x
  4. Hagan CL, Kim S, Kahne D. Reconstitution of outer membrane protein assembly from purified components. Science. 2010 May 14;328(5980):890-2. doi: 10.1126/science.1188919. Epub 2010 Apr, 8. PMID:20378773 doi:10.1126/science.1188919
  5. Hagan CL, Kahne D. The reconstituted Escherichia coli Bam complex catalyzes multiple rounds of beta-barrel assembly. Biochemistry. 2011 Sep 6;50(35):7444-6. doi: 10.1021/bi2010784. Epub 2011 Aug 11. PMID:21823654 doi:10.1021/bi2010784
  6. Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure. 2010 Nov 10;18(11):1492-501. PMID:21070948 doi:10.1016/j.str.2010.08.012

3og5, resolution 2.69Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA