3m0k

From Proteopedia
Jump to navigation Jump to search

Structure of oxaloacetate acetylhydrolase in complex with the product oxalateStructure of oxaloacetate acetylhydrolase in complex with the product oxalate

Structural highlights

3m0k is a 1 chain structure with sequence from Cryphonectria parasitica. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Oxalacetate acetylhydrolase (OAH), a member of the phosphoenolpyruvate mutase/isocitrate lyase superfamily, catalyzes the hydrolysis of oxalacetate to oxalic acid and acetate. This study shows that knock-out of the oah gene in Cryphonectria parasitica, the chestnut blight fungus, reduces the ability of the fungus to form cankers on chestnut trees, suggesting that OAH plays a key role in virulence. OAH was produced in Escherichia coli and purified, and its catalytic rates were determined. Oxalacetate is the main OAH substrate, but the enzyme also acts as a lyase of (2R,3S)-dimethyl malate with approximately 1000-fold lower efficacy. The crystal structure of OAH was determined alone, in complex with a mechanism-based inhibitor, 3,3-difluorooxalacetate (DFOA), and in complex with the reaction product, oxalate, to a resolution limit of 1.30, 1.55, and 1.65 A, respectively. OAH assembles into a dimer of dimers with each subunit exhibiting an (alpha/beta)(8) barrel fold and each pair swapping the 8th alpha-helix. An active site "gating loop" exhibits conformational disorder in the ligand-free structure. To obtain the structures of the OAH.ligand complexes, the ligand-free OAH crystals were soaked briefly with DFOA or oxalacetate. DFOA binding leads to ordering of the gating loop in a conformation that sequesters the ligand from the solvent. DFOA binds in a gem-diol form analogous to the oxalacetate intermediate/transition state. Oxalate binds in a planar conformation, but the gating loop is largely disordered. Comparison between the OAH structure and that of the closely related enzyme, 2,3-dimethylmalate lyase, suggests potential determinants of substrate preference.

Structure of oxalacetate acetylhydrolase, a virulence factor of the chestnut blight fungus.,Chen C, Sun Q, Narayanan B, Nuss DL, Herzberg O J Biol Chem. 2010 Aug 20;285(34):26685-96. Epub 2010 Jun 17. PMID:20558740[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Chen C, Sun Q, Narayanan B, Nuss DL, Herzberg O. Structure of oxalacetate acetylhydrolase, a virulence factor of the chestnut blight fungus. J Biol Chem. 2010 Aug 20;285(34):26685-96. Epub 2010 Jun 17. PMID:20558740 doi:10.1074/jbc.M110.117804

3m0k, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA