IRE1 complexed with JAK Inhibitor IIRE1 complexed with JAK Inhibitor I

Structural highlights

3lj2 is a 2 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.33Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IRE1_YEAST Senses unfolded proteins in the lumen of the endoplasmic reticulum via its N-terminal domain which leads to enzyme auto-activation. The active endoribonuclease domain splices HAC1 precursor mRNA to produce the mature form which then induces transcription of UPR target genes.[1] [2] [3]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence of enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.

Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1.,Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D Mol Cell. 2010 Apr 23;38(2):291-304. PMID:20417606[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Welihinda AA, Kaufman RJ. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and trans-phosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem. 1996 Jul 26;271(30):18181-7. PMID:8663458
  2. Shamu CE, Walter P. Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J. 1996 Jun 17;15(12):3028-39. PMID:8670804
  3. Sidrauski C, Walter P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell. 1997 Sep 19;90(6):1031-9. PMID:9323131
  4. Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, Ron D. Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol Cell. 2010 Apr 23;38(2):291-304. PMID:20417606 doi:10.1016/j.molcel.2010.04.001

3lj2, resolution 3.33Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA