3ia6
X-ray Crystal structure of the nuclear hormone receptor PPAR-gamma in a complex with a PPAR gamma/alpha dual agonistX-ray Crystal structure of the nuclear hormone receptor PPAR-gamma in a complex with a PPAR gamma/alpha dual agonist
Structural highlights
DiseasePPARG_HUMAN Note=Defects in PPARG can lead to type 2 insulin-resistant diabetes and hyptertension. PPARG mutations may be associated with colon cancer. Defects in PPARG may be associated with susceptibility to obesity (OBESITY) [MIM:601665. It is a condition characterized by an increase of body weight beyond the limitation of skeletal and physical requirements, as the result of excessive accumulation of body fat.[1] Defects in PPARG are the cause of familial partial lipodystrophy type 3 (FPLD3) [MIM:604367. Familial partial lipodystrophies (FPLD) are a heterogeneous group of genetic disorders characterized by marked loss of subcutaneous (sc) fat from the extremities. Affected individuals show an increased preponderance of insulin resistance, diabetes mellitus and dyslipidemia.[2] [3] Genetic variations in PPARG can be associated with susceptibility to glioma type 1 (GLM1) [MIM:137800. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Note=Polymorphic PPARG alleles have been found to be significantly over-represented among a cohort of American patients with sporadic glioblastoma multiforme suggesting a possible contribution to disease susceptibility. FunctionPPARG_HUMAN Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the receptor binds to a promoter element in the gene for acyl-CoA oxidase and activates its transcription. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses.[4] [5] [6] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe synthesis of a new series of phenylpropanoic acid derivatives incorporating an heteroaryl group at the alpha-position and their evaluation for binding and activation of PPARalpha and PPARgamma are presented in this report. Among the new compounds, (S)-3-{4-[3-(5-methyl-2-phenyl-oxazol-4-yl)-propyl]-phenyl}-2-1,2,3-triazo l-2-yl-propionic acid (17j), was identified as a potent human PPARalpha/gamma dual agonist (EC(50)=0.013 and 0.061 microM, respectively) with demonstrated oral bioavailability in rat and dog. 17j was shown to decrease insulin levels, plasma glucose, and triglycerides in the ZDF female rat model. In the human apolipoprotein A-1/CETP transgenic mouse model 17j produced increases in hApoA1 and HDL-C and decreases in plasma triglycerides. The increased potency for binding and activation of both PPAR subtypes observed with 17j when compared to previous analogs in this series was explained based on results derived from crystallographic and modeling studies. Synthesis and evaluation of novel alpha-heteroaryl-phenylpropanoic acid derivatives as PPARalpha/gamma dual agonists.,Casimiro-Garcia A, Bigge CF, Davis JA, Padalino T, Pulaski J, Ohren JF, McConnell P, Kane CD, Royer LJ, Stevens KA, Auerbach B, Collard W, McGregor C, Song K Bioorg Med Chem. 2009 Oct 15;17(20):7113-25. Epub 2009 Sep 6. PMID:19783444[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|