3h1f

From Proteopedia
Jump to navigation Jump to search

Crystal structure of CheY mutant D53A of Helicobacter pyloriCrystal structure of CheY mutant D53A of Helicobacter pylori

Structural highlights

3h1f is a 1 chain structure with sequence from Helicobacter pylori 26695. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CHEY1_HELPY Chemotactic response regulator protein that modulates the rotation direction of bacterial flagellar motors. Plays an important role in the colonization and infection of Helicobacter pylori (PubMed:10722597). Upon phosphorylation by CheA, interacts with the flagellar motor protein FliM to cause clockwise flagellar rotation and bacterial reversals, as opposed to straight swimming when CheY1 is not phosphorylated (PubMed:20207758).[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Chemotaxis is an important virulence factor for Helicobacter pylori colonization and infection. The chemotactic system of H. pylori is marked by the presence of multiple response regulators: CheY1, one CheY-like-containing CheA protein (CheAY2), and three CheV proteins. Recent studies have demonstrated that these molecules play unique roles in the chemotactic signal transduction mechanisms of H. pylori. Here we report the crystal structures of BeF(3(-)-activated CheY1 from H. pylori resolved to 2.4 A. Structural comparison of CheY1 with active-site residues of BeF3(-)-bound CheY from Escherichia coli and fluorescence quenching experiments revealed the importance of Thr84 in the phosphotransfer reaction. Complementation assays using various nonchemotactic E. coli mutants and pull-down experiments demonstrated that CheY1 displays differential association with the flagellar motor in E. coli. The structural rearrangement of helix 5 and the C-terminal loop in CheY1 provide a different interaction surface for FliM. On the other hand, interaction of the CheA-P2 domain with CheY1, but not with CheY2/CheV proteins, underlines the preferential recognition of CheY1 by CheA in the phosphotransfer reaction. Our results provide the first structural insight into the features of the H. pylori chemotactic system as a model for Epsilonproteobacteria.

Crystal structure of activated CheY1 from Helicobacter pylori.,Lam KH, Ling TK, Au SW J Bacteriol. 2010 May;192(9):2324-34. Epub 2010 Mar 5. PMID:20207758[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Foynes S, Dorrell N, Ward SJ, Stabler RA, McColm AA, Rycroft AN, Wren BW. Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun. 2000 Apr;68(4):2016-23. PMID:10722597 doi:10.1128/IAI.68.4.2016-2023.2000
  2. Lam KH, Ling TK, Au SW. Crystal structure of activated CheY1 from Helicobacter pylori. J Bacteriol. 2010 May;192(9):2324-34. Epub 2010 Mar 5. PMID:20207758 doi:10.1128/JB.00603-09
  3. Lam KH, Ling TK, Au SW. Crystal structure of activated CheY1 from Helicobacter pylori. J Bacteriol. 2010 May;192(9):2324-34. Epub 2010 Mar 5. PMID:20207758 doi:10.1128/JB.00603-09

3h1f, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA