3fho

From Proteopedia
Jump to navigation Jump to search

Structure of S. pombe Dbp5Structure of S. pombe Dbp5

Structural highlights

3fho is a 2 chain structure with sequence from Schizosaccharomyces pombe. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DBP5_SCHPO ATP-dependent RNA helicase associated with the nuclear pore complex and essential for mRNA export from the nucleus. May participate in a terminal step of mRNA export through the removal of proteins that accompany mRNA through the nucleopore complex. May also be involved in early transcription (By similarity).

Publication Abstract from PubMed

DEAD-box protein 5 (Dbp5p) plays very important roles in RNA metabolism from transcription, to translation, to RNA decay. It is an RNA helicase and functions as an essential RNA export factor from nucleus. Here, we report the solution NMR structures of the N- and C-terminal domains (NTD and CTD, respectively) of Dbp5p from Saccharomyces cerevisiae (ScDbp5p) and X-ray crystal structure of Dbp5p from Schizosaccharomyces pombe (SpDbp5p) in the absence of nucleotides and RNA. The crystal structure clearly shows that SpDbp5p comprises two RecA-like domains that do not interact with each other. NMR results show that the N-terminal flanking region of ScDpbp5 (M1-E70) is intrinsically unstructured and the region Y71-R121 including the Q motif is highly dynamic on millisecond-microsecond timescales in solution. The C-terminal flanking region of ScDbp5p forms a short beta-strand and a long helix. This helix is unique for ScDbp5p and has not been observed in other DEAD-box proteins. Compared with other DEAD-box proteins, Dbp5p has an extra insert with six residues in the CTD. NMR structure reveals that the insert is located in a solvent-exposed loop capable of interacting with other proteins. ATP and ADP titration experiments show that both ADP and ATP bind to the consensus binding site in the NTD of ScDbp5p but do not interact with the CTD at all. Binding of ATP or ADP to NTD induces significant conformational rearrangement too.

Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides.,Fan JS, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, Yang D J Mol Biol. 2009 Apr 24;388(1):1-10. Epub 2009 Mar 10. PMID:19281819[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fan JS, Cheng Z, Zhang J, Noble C, Zhou Z, Song H, Yang D. Solution and crystal structures of mRNA exporter Dbp5p and its interaction with nucleotides. J Mol Biol. 2009 Apr 24;388(1):1-10. Epub 2009 Mar 10. PMID:19281819 doi:10.1016/j.jmb.2009.03.004

3fho, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA