3fe2

From Proteopedia
Jump to navigation Jump to search

Human DEAD-BOX RNA helicase DDX5 (P68), conserved domain I in complex with ADPHuman DEAD-BOX RNA helicase DDX5 (P68), conserved domain I in complex with ADP

Structural highlights

3fe2 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.6Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DDX5_HUMAN Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for estrogen receptor ESR1 and androgen receptor AR. Increases ESR1 AF-1 domain-mediated transactivation and ESR1 AF-1 and AF-2 domains transcriptional synergistic activity. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 transcriptional activity and involved in skeletal muscle differentiation. Transcriptional coactivator for p53/TP53 and involved in p53/TP53 transcriptional response to DNA damage and p53/TP53-dependent apoptosis. Transcriptional coactivator for RUNX2 and involved in regulation of osteoblast differentiation. Acts as transcriptional repressor in a promoter-specicic manner; the function probbaly involves association with histone deacetylases, such as HDAC1.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

Publication Abstract from PubMed

DEAD-box RNA helicases play various, often critical, roles in all processes where RNAs are involved. Members of this family of proteins are linked to human disease, including cancer and viral infections. DEAD-box proteins contain two conserved domains that both contribute to RNA and ATP binding. Despite recent advances the molecular details of how these enzymes convert chemical energy into RNA remodeling is unknown. We present crystal structures of the isolated DEAD-domains of human DDX2A/eIF4A1, DDX2B/eIF4A2, DDX5, DDX10/DBP4, DDX18/myc-regulated DEAD-box protein, DDX20, DDX47, DDX52/ROK1, and DDX53/CAGE, and of the helicase domains of DDX25 and DDX41. Together with prior knowledge this enables a family-wide comparative structural analysis. We propose a general mechanism for opening of the RNA binding site. This analysis also provides insights into the diversity of DExD/H- proteins, with implications for understanding the functions of individual family members.

Comparative structural analysis of human DEAD-box RNA helicases.,Schutz P, Karlberg T, van den Berg S, Collins R, Lehtio L, Hogbom M, Holmberg-Schiavone L, Tempel W, Park HW, Hammarstrom M, Moche M, Thorsell AG, Schuler H PLoS One. 2010 Sep 30;5(9). pii: e12791. PMID:20941364[11]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S. Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol. 1999 Aug;19(8):5363-72. PMID:10409727
  2. Watanabe M, Yanagisawa J, Kitagawa H, Takeyama K, Ogawa S, Arao Y, Suzawa M, Kobayashi Y, Yano T, Yoshikawa H, Masuhiro Y, Kato S. A subfamily of RNA-binding DEAD-box proteins acts as an estrogen receptor alpha coactivator through the N-terminal activation domain (AF-1) with an RNA coactivator, SRA. EMBO J. 2001 Mar 15;20(6):1341-52. PMID:11250900 doi:http://dx.doi.org/10.1093/emboj/20.6.1341
  3. Rossow KL, Janknecht R. Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene. 2003 Jan 9;22(1):151-6. PMID:12527917 doi:http://dx.doi.org/10.1038/sj.onc.1206067
  4. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV. The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol. 2004 Aug 6;5:11. PMID:15298701 doi:http://dx.doi.org/10.1186/1471-2199-5-11
  5. Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV. The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J. 2005 Feb 9;24(3):543-53. Epub 2005 Jan 20. PMID:15660129 doi:http://dx.doi.org/10.1038/sj.emboj.7600550
  6. Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell. 2006 Oct;11(4):547-60. PMID:17011493 doi:http://dx.doi.org/10.1016/j.devcel.2006.08.003
  7. Clark EL, Coulson A, Dalgliesh C, Rajan P, Nicol SM, Fleming S, Heer R, Gaughan L, Leung HY, Elliott DJ, Fuller-Pace FV, Robson CN. The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. Cancer Res. 2008 Oct 1;68(19):7938-46. doi: 10.1158/0008-5472.CAN-08-0932. PMID:18829551 doi:http://dx.doi.org/10.1158/0008-5472.CAN-08-0932
  8. Jensen ED, Niu L, Caretti G, Nicol SM, Teplyuk N, Stein GS, Sartorelli V, van Wijnen AJ, Fuller-Pace FV, Westendorf JJ. p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation. J Cell Biochem. 2008 Apr 1;103(5):1438-51. PMID:17960593 doi:http://dx.doi.org/10.1002/jcb.21526
  9. Wortham NC, Ahamed E, Nicol SM, Thomas RS, Periyasamy M, Jiang J, Ochocka AM, Shousha S, Huson L, Bray SE, Coombes RC, Ali S, Fuller-Pace FV. The DEAD-box protein p72 regulates ERalpha-/oestrogen-dependent transcription and cell growth, and is associated with improved survival in ERalpha-positive breast cancer. Oncogene. 2009 Nov 19;28(46):4053-64. doi: 10.1038/onc.2009.261. Epub 2009 Aug, 31. PMID:19718048 doi:http://dx.doi.org/10.1038/onc.2009.261
  10. Kar A, Fushimi K, Zhou X, Ray P, Shi C, Chen X, Liu Z, Chen S, Wu JY. RNA helicase p68 (DDX5) regulates tau exon 10 splicing by modulating a stem-loop structure at the 5' splice site. Mol Cell Biol. 2011 May;31(9):1812-21. doi: 10.1128/MCB.01149-10. Epub 2011 Feb, 22. PMID:21343338 doi:http://dx.doi.org/10.1128/MCB.01149-10
  11. Schutz P, Karlberg T, van den Berg S, Collins R, Lehtio L, Hogbom M, Holmberg-Schiavone L, Tempel W, Park HW, Hammarstrom M, Moche M, Thorsell AG, Schuler H. Comparative structural analysis of human DEAD-box RNA helicases. PLoS One. 2010 Sep 30;5(9). pii: e12791. PMID:20941364 doi:10.1371/journal.pone.0012791

3fe2, resolution 2.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA