3e2n

From Proteopedia
Jump to navigation Jump to search

Engineering ascorbate peroxidase activity into cytochrome c peroxidaseEngineering ascorbate peroxidase activity into cytochrome c peroxidase

Structural highlights

3e2n is a 1 chain structure with sequence from Pisum sativum and Saccharomyces cerevisiae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.3Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

APX1_PEA Plays a key role in hydrogen peroxide removal.CCPR_YEAST Destroys radicals which are normally produced within the cells and which are toxic to biological systems.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Cytochrome c peroxidase (CCP) and ascorbate peroxidase (APX) have very similar structures, and yet neither CCP nor APX exhibits each other's activities with respect to reducing substrates. APX has a unique substrate binding site near the heme propionates where ascorbate H-bonds with a surface Arg and one heme propionate (Sharp et al. (2003) Nat. Struct. Biol. 10, 303-307). The corresponding region in CCP has a much longer surface loop, and the critical Arg residue that is required for ascorbate binding in APX is Asn in CCP. In order to convert CCP into an APX, the ascorbate-binding loop and critical arginine were engineered into CCP to give the CCP2APX mutant. The mutant crystal structure shows that the engineered site is nearly identical to that found in APX. While wild-type CCP shows no APX activity, CCP2APX catalyzes the peroxidation of ascorbate at a rate of approximately 12 min (-1), indicating that the engineered ascorbate-binding loop can bind ascorbate.

Engineering ascorbate peroxidase activity into cytochrome c peroxidase.,Meharenna YT, Oertel P, Bhaskar B, Poulos TL Biochemistry. 2008 Sep 30;47(39):10324-32. Epub 2008 Sep 5. PMID:18771292[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Meharenna YT, Oertel P, Bhaskar B, Poulos TL. Engineering ascorbate peroxidase activity into cytochrome c peroxidase. Biochemistry. 2008 Sep 30;47(39):10324-32. Epub 2008 Sep 5. PMID:18771292 doi:10.1021/bi8007565

3e2n, resolution 1.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA