3chi
Crystal Structure of Di-iron AurF (Monoclinic form)Crystal Structure of Di-iron AurF (Monoclinic form)
Structural highlights
FunctionAURF_STRTU Involved in the biosynthesis of the polyketide antibiotic aureothin (PubMed:14700630, PubMed:15038705). Catalyzes the oxidation of p-aminobenzoate (pABA) to p-nitrobenzoate (pNBA), an unusual polyketide synthase starter unit (PubMed:15038705, PubMed:16927313, PubMed:20798054, PubMed:18458342). Reaction mechanism involves the generation of a peroxodiiron(III/III) intermediate, which effects the initial oxidation of p-aminobenzoate to p-hydroxylaminobenzoate (Ar-NHOH) (PubMed:19731912, PubMed:20798054). Ar-NHOH is then probably directly converted to the fully oxidized p-nitrobenzoate via a four-electron N-oxidation, bypassing the formation of a nitroso compound (PubMed:20798054).[1] [2] [3] [4] [5] [6] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedp-Aminobenzoate N-oxygenase (AurF) from Streptomyces thioluteus catalyzes the formation of unusual polyketide synthase starter unit p-nitrobenzoic acid (pNBA) from p-aminobenzoic acid (pABA) in the biosynthesis of antibiotic aureothin. AurF is a metalloenzyme, but its native enzymatic activity has not been demonstrated in vitro, and its catalytic mechanism is unclear. In addition, the nature of the cofactor remains a controversy. Here, we report the in vitro reconstitution of the AurF enzyme activity, the crystal structure of AurF in the oxidized state, and the cocrystal structure of AurF with its product pNBA. Our combined biochemical and structural analysis unequivocally indicates that AurF is a non-heme di-iron monooxygenase that catalyzes sequential oxidation of aminoarenes to nitroarenes via hydroxylamine and nitroso intermediates. In vitro reconstitution and crystal structure of p-aminobenzoate N-oxygenase (AurF) involved in aureothin biosynthesis.,Choi YS, Zhang H, Brunzelle JS, Nair SK, Zhao H Proc Natl Acad Sci U S A. 2008 May 13;105(19):6858-63. Epub 2008 May 5. PMID:18458342[7] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|