3c4z

From Proteopedia
Jump to navigation Jump to search

Crystal structure of G protein coupled receptor kinase 1 bound to ADP and magnesium chloride at 1.84ACrystal structure of G protein coupled receptor kinase 1 bound to ADP and magnesium chloride at 1.84A

Structural highlights

3c4z is a 1 chain structure with sequence from Bos taurus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.84Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GRK1_BOVIN Retina-specific kinase involved in the signal turnoff via phosphorylation of rhodopsin (RHO), the G protein- coupled receptor that initiates the phototransduction cascade (PubMed:12686556, PubMed:16675451, PubMed:21299498). This rapid desensitization is essential for scotopic vision and permits rapid adaptation to changes in illumination (By similarity). May play a role in the maintenance of the outer nuclear layer in the retina (By similarity).[UniProtKB:Q9WVL4][1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate activated heptahelical receptors, leading to their uncoupling from G proteins. Here we report six crystal structures of rhodopsin kinase (GRK1), revealing not only three distinct nucleotide-binding states of a GRK but also two key structural elements believed to be involved in the recognition of activated GPCRs. The first is the C-terminal extension of the kinase domain, which was observed in all nucleotide-bound GRK1 structures. The second is residues 5-30 of the N terminus, observed in one of the GRK1.(Mg2+)2.ATP structures. The N terminus was also clearly phosphorylated, leading to the identification of two novel phosphorylation sites by mass spectral analysis. Co-localization of the N terminus and the C-terminal extension near the hinge of the kinase domain suggests that activated GPCRs stimulate kinase activity by binding to this region to facilitate full closure of the kinase domain.

Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation.,Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJ J Biol Chem. 2008 May 16;283(20):14053-62. Epub 2008 Mar 13. PMID:18339619[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Weiergraber OH, Senin II, Philippov PP, Granzin J, Koch KW. Impact of N-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J Biol Chem. 2003 Jun 20;278(25):22972-9. Epub 2003 Apr 9. PMID:12686556 doi:10.1074/jbc.M300447200
  2. Higgins MK, Oprian DD, Schertler GF. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase. J Biol Chem. 2006 Jul 14;281(28):19426-32. doi: 10.1074/jbc.M602203200. Epub 2006 , May 4. PMID:16675451 doi:http://dx.doi.org/10.1074/jbc.M602203200
  3. Zernii EY, Komolov KE, Permyakov SE, Kolpakova T, Dell'orco D, Poetzsch A, Knyazeva EL, Grigoriev II, Permyakov EA, Senin II, Philippov PP, Koch KW. Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase. Biochem J. 2011 Apr 15;435(2):441-50. doi: 10.1042/BJ20110013. PMID:21299498 doi:http://dx.doi.org/10.1042/BJ20110013
  4. Singh P, Wang B, Maeda T, Palczewski K, Tesmer JJ. Structures of rhodopsin kinase in different ligand states reveal key elements involved in G protein-coupled receptor kinase activation. J Biol Chem. 2008 May 16;283(20):14053-62. Epub 2008 Mar 13. PMID:18339619 doi:10.1074/jbc.M708974200

3c4z, resolution 1.84Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA