3bts
Crystal structure of a ternary complex of the transcriptional repressor Gal80p (Gal80S0 [G301R]) and the acidic activation domain of Gal4p (aa 854-874) from Saccharomyces cerevisiae with NADCrystal structure of a ternary complex of the transcriptional repressor Gal80p (Gal80S0 [G301R]) and the acidic activation domain of Gal4p (aa 854-874) from Saccharomyces cerevisiae with NAD
Structural highlights
FunctionGAL80_YEAST This protein is a negative regulator for the gene expression of the lactose/galactose metabolic genes. It binds to GAL4 and so blocks transcriptional activation by it, in the absence of an inducing sugar. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTranscriptional regulation of the galactose-metabolizing genes in Saccharomyces cerevisiae depends on three core proteins: Gal4p, the transcriptional activator that binds to upstream activating DNA sequences (UAS(GAL)); Gal80p, a repressor that binds to the carboxyl terminus of Gal4p and inhibits transcription; and Gal3p, a cytoplasmic transducer that, upon binding galactose and adenosine 5'-triphosphate, relieves Gal80p repression. The current model of induction relies on Gal3p sequestering Gal80p in the cytoplasm. However, the rapid induction of this system implies that there is a missing factor. Our structure of Gal80p in complex with a peptide from the carboxyl-terminal activation domain of Gal4p reveals the existence of a dinucleotide that mediates the interaction between the two. Biochemical and in vivo experiments suggests that nicotinamide adenine dinucleotide phosphate (NADP) plays a key role in the initial induction event. NADP regulates the yeast GAL induction system.,Kumar PR, Yu Y, Sternglanz R, Johnston SA, Joshua-Tor L Science. 2008 Feb 22;319(5866):1090-2. PMID:18292341[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|