2zpn

From Proteopedia
Jump to navigation Jump to search

The crystal structure of Saccharomyces cerevisiae Atg8- Atg19(412-415) complexThe crystal structure of Saccharomyces cerevisiae Atg8- Atg19(412-415) complex

Structural highlights

2zpn is a 8 chain structure with sequence from Saccharomyces cerevisiae and Saccharomyces cerevisiae S288C. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ATG8_YEAST Involved in cytoplasm to vacuole transport (Cvt) vesicles and autophagosomes formation. With ATG4, may mediate the delivery of the vesicles and autophagosomes to the vacuole via the microtubule cytoskeleton. Participates also in membrane fusion events that take place in the early secretory pathway.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Autophagy is a non-selective bulk degradation process in which isolation membranes enclose a portion of cytoplasm to form double-membrane vesicles, called autophagosomes, and deliver their inner constituents to the lytic compartments. Recent studies have also shed light on another mode of autophagy that selectively degrades various targets. Yeast Atg8 and its mammalian homologue LC3 are ubiquitin-like modifiers that are localized on isolation membranes and play crucial roles in the formation of autophagosomes. These proteins are also involved in selective incorporation of specific cargo molecules into autophagosomes, in which Atg8 and LC3 interact with Atg19 and p62, receptor proteins for vacuolar enzymes and disease-related protein aggregates, respectively. Using X-ray crystallography and NMR, we herein report the structural basis for Atg8-Atg19 and LC3-p62 interactions. Remarkably, Atg8 and LC3 were shown to interact with Atg19 and p62, respectively, in a quite similar manner: they recognized the side-chains of Trp and Leu in a four-amino acid motif, WXXL, in Atg19 and p62 using hydrophobic pockets conserved among Atg8 homologues. Together with mutational analyses, our results show the fundamental mechanism that allows Atg8 homologues, in association with WXXL-containing proteins, to capture specific cargo molecules, thereby endowing isolation membranes and/or their assembly machineries with target selectivity.

Structural basis of target recognition by Atg8/LC3 during selective autophagy.,Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F Genes Cells. 2008 Oct 22. PMID:19021777[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993 Oct 25;333(1-2):169-74. PMID:8224160
  2. Harding TM, Morano KA, Scott SV, Klionsky DJ. Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. J Cell Biol. 1995 Nov;131(3):591-602. PMID:7593182
  3. Lang T, Schaeffeler E, Bernreuther D, Bredschneider M, Wolf DH, Thumm M. Aut2p and Aut7p, two novel microtubule-associated proteins are essential for delivery of autophagic vesicles to the vacuole. EMBO J. 1998 Jul 1;17(13):3597-607. PMID:9649430 doi:10.1093/emboj/17.13.3597
  4. Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y. Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol. 1999 Oct 18;147(2):435-46. PMID:10525546
  5. Huang WP, Scott SV, Kim J, Klionsky DJ. The itinerary of a vesicle component, Aut7p/Cvt5p, terminates in the yeast vacuole via the autophagy/Cvt pathways. J Biol Chem. 2000 Feb 25;275(8):5845-51. PMID:10681575
  6. Legesse-Miller A, Sagiv Y, Glozman R, Elazar Z. Aut7p, a soluble autophagic factor, participates in multiple membrane trafficking processes. J Biol Chem. 2000 Oct 20;275(42):32966-73. PMID:10837468 doi:10.1074/jbc.M000917200
  7. Kirisako T, Ichimura Y, Okada H, Kabeya Y, Mizushima N, Yoshimori T, Ohsumi M, Takao T, Noda T, Ohsumi Y. The reversible modification regulates the membrane-binding state of Apg8/Aut7 essential for autophagy and the cytoplasm to vacuole targeting pathway. J Cell Biol. 2000 Oct 16;151(2):263-76. PMID:11038174
  8. Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y. A ubiquitin-like system mediates protein lipidation. Nature. 2000 Nov 23;408(6811):488-92. PMID:11100732 doi:10.1038/35044114
  9. Kim J, Huang WP, Klionsky DJ. Membrane recruitment of Aut7p in the autophagy and cytoplasm to vacuole targeting pathways requires Aut1p, Aut2p, and the autophagy conjugation complex. J Cell Biol. 2001 Jan 8;152(1):51-64. PMID:11149920
  10. Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, Ishii J, Fujioka Y, Ohsumi Y, Inagaki F. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells. 2008 Oct 22. PMID:19021777 doi:GTC1238

2zpn, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA