2xyh

From Proteopedia
Jump to navigation Jump to search

Caspase-3:CAS60254719Caspase-3:CAS60254719

Structural highlights

2xyh is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.89Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

CASP3_HUMAN Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.[1] [2]

Publication Abstract from PubMed

Using a fragment-based docking procedure, several small-molecule inhibitors of caspase-3 were identified and tested and the crystal structures of three inhibitor complexes were determined. The crystal structures revealed that one inhibitor (NSC 18508) occupies only the S1 subsite, while two other inhibitors (NSC 89167 and NSC 251810) bind only to the prime part of the substrate-binding site. One of the major conformational changes observed in all three caspase-3-inhibitor complexes is a rotation of the Tyr204 side chain, which blocks the S2 subsite. In addition, the structural variability of the residues shaping the S1-S4 as well as the S1' subsites supports an induced-fit mechanism for the binding of the inhibitors in the active site. The high-resolution crystal structures reported here provide novel insights into the architecture of the substrate-binding site, which might be useful for the design of more potent caspase inhibitors.

In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety.,Ganesan R, Jelakovic S, Mittl PR, Caflisch A, Grutter MG Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Aug 1;67(Pt, 8):842-50. Epub 2011 Jul 13. PMID:21821879[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA, et al.. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37-43. PMID:7596430 doi:http://dx.doi.org/10.1038/376037a0
  2. Cabrera JR, Bouzas-Rodriguez J, Tauszig-Delamasure S, Mehlen P. RET modulates cell adhesion via its cleavage by caspase in sympathetic neurons. J Biol Chem. 2011 Apr 22;286(16):14628-38. doi: 10.1074/jbc.M110.195461. Epub, 2011 Feb 28. PMID:21357690 doi:10.1074/jbc.M110.195461
  3. Ganesan R, Jelakovic S, Mittl PR, Caflisch A, Grutter MG. In silico identification and crystal structure validation of caspase-3 inhibitors without a P1 aspartic acid moiety. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Aug 1;67(Pt, 8):842-50. Epub 2011 Jul 13. PMID:21821879 doi:10.1107/S1744309111018604

2xyh, resolution 1.89Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA