2x18
The crystal structure of the PH domain of human AKT3 protein kinaseThe crystal structure of the PH domain of human AKT3 protein kinase
Structural highlights
DiseaseAKT3_HUMAN Hemimegalencephaly;Megalencephaly-polymicrogyria-postaxial polydactyly-hydrocephalus syndrome. AKT3 is a key modulator of several tumors like melanoma, glioma and ovarian cancer. Active AKT3 increases progressively during melanoma tumor progression with highest levels present in advanced-stage metastatic melanomas. Promotes melanoma tumorigenesis by decreasing apoptosis. Plays a key role in the genesis of ovarian cancers through modulation of G2/M phase transition. With AKT2, plays a pivotal role in the biology of glioblastoma. The disease is caused by variants affecting the gene represented in this entry. FunctionAKT3_HUMAN AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial for the viability of malignant glioma cells. AKT3 isoform may also be the key molecule in up-regulation and down-regulation of MMP13 via IL13. Required for the coordination of mitochondrial biogenesis with growth factor-induced increases in cellular energy demands. Down-regulation by RNA interference reduces the expression of the phosphorylated form of BAD, resulting in the induction of caspase-dependent apoptosis.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. See AlsoReferences
|
|