2x13

From Proteopedia
Jump to navigation Jump to search

The catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP and 3phosphoglycerateThe catalytically active fully closed conformation of human phosphoglycerate kinase in complex with ADP and 3phosphoglycerate

Structural highlights

2x13 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.74Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PGK1_HUMAN Defects in PGK1 are the cause of phosphoglycerate kinase 1 deficiency (PGK1D) [MIM:300653. It is a condition with a highly variable clinical phenotype that includes hemolytic anemia, rhabdomyolysis, myopathy and neurologic involvement. Patients can express one or more of these manifestations.[1] [2] [3] [4] [5] [6] [7] [8] [9]

Function

PGK1_HUMAN In addition to its role as a glycolytic enzyme, it seems that PGK-1 acts as a polymerase alpha cofactor protein (primer recognition protein).

Publication Abstract from PubMed

Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.

Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide.,Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW Structure. 2024 Jul 22:S0969-2126(24)00270-3. doi: 10.1016/j.str.2024.07.007. PMID:39106858[10]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Yoshida A, Twele TW, Dave V, Beutler E. Molecular abnormality of a phosphoglycerate kinase variant (PGK-Alabama). Blood Cells Mol Dis. 1995;21(3):179-81. PMID:8673469 doi:S1079-9796(85)70020-4
  2. Cohen-Solal M, Valentin C, Plassa F, Guillemin G, Danze F, Jaisson F, Rosa R. Identification of new mutations in two phosphoglycerate kinase (PGK) variants expressing different clinical syndromes: PGK Creteil and PGK Amiens. Blood. 1994 Aug 1;84(3):898-903. PMID:8043870
  3. Ookawara T, Dave V, Willems P, Martin JJ, de Barsy T, Matthys E, Yoshida A. Retarded and aberrant splicings caused by single exon mutation in a phosphoglycerate kinase variant. Arch Biochem Biophys. 1996 Mar 1;327(1):35-40. PMID:8615693 doi:http://dx.doi.org/10.1006/abbi.1996.0089
  4. Valentin C, Birgens H, Craescu CT, Brodum-Nielsen K, Cohen-Solal M. A phosphoglycerate kinase mutant (PGK Herlev; D285V) in a Danish patient with isolated chronic hemolytic anemia: mechanism of mutation and structure-function relationships. Hum Mutat. 1998;12(4):280-7. PMID:9744480 doi:<280::AID-HUMU10>3.0.CO;2-V 10.1002/(SICI)1098-1004(1998)12:4<280::AID-HUMU10>3.0.CO;2-V
  5. Maeda M, Yoshida A. Molecular defect of a phosphoglycerate kinase variant (PGK-Matsue) associated with hemolytic anemia: Leu----Pro substitution caused by T/A----C/G transition in exon 3. Blood. 1991 Mar 15;77(6):1348-52. PMID:2001457
  6. Maeda M, Bawle EV, Kulkarni R, Beutler E, Yoshida A. Molecular abnormalities of a phosphoglycerate kinase variant generated by spontaneous mutation. Blood. 1992 May 15;79(10):2759-62. PMID:1586722
  7. Fujii H, Kanno H, Hirono A, Shiomura T, Miwa S. A single amino acid substitution (157 Gly----Val) in a phosphoglycerate kinase variant (PGK Shizuoka) associated with chronic hemolysis and myoglobinuria. Blood. 1992 Mar 15;79(6):1582-5. PMID:1547346
  8. Fujii H, Chen SH, Akatsuka J, Miwa S, Yoshida A. Use of cultured lymphoblastoid cells for the study of abnormal enzymes: molecular abnormality of a phosphoglycerate kinase variant associated with hemolytic anemia. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2587-90. PMID:6941312
  9. Fujii H, Yoshida A. Molecular abnormality of phosphoglycerate kinase-Uppsala associated with chronic nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5461-5. PMID:6933565
  10. Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure. 2024 Jul 22:S0969-2126(24)00270-3. PMID:39106858 doi:10.1016/j.str.2024.07.007

2x13, resolution 1.74Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA