2vyq

From Proteopedia
Jump to navigation Jump to search

FERREDOXIN:NADP REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR, LEU 263 REPLACED BY PRO AND TYR 303 REPLACED BY SER (T155G-A160T-L263P-Y303S)FERREDOXIN:NADP REDUCTASE MUTANT WITH THR 155 REPLACED BY GLY, ALA 160 REPLACED BY THR, LEU 263 REPLACED BY PRO AND TYR 303 REPLACED BY SER (T155G-A160T-L263P-Y303S)

Structural highlights

2vyq is a 1 chain structure with sequence from Nostoc sp. PCC 7119. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FENR_NOSSO

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Ferredoxin-NADP+ reductases (FNRs) must determine the coenzyme specificity and allow the transient encounter between N5 of its flavin cofactor and C4 of the coenzyme nicotinamide for efficient hydride transfer. Combined site-directed replacements in different putative determinants of the FNR coenzyme specificity were simultaneously produced. The resulting variants were structurally and functionally analyzed for their binding and hydride transfer abilities to the FNR physiological coenzyme NADP+/H, as well as to NAD+/H. The previously studied Y303S mutation is the only one that significantly enhances specificity for NAD+. Combination of mutations from the pyrophosphate or 2'-phosphate regions, even including Y303S, does not improve activity with NAD+, despite structures of these FNRs show how particular coenzyme-binding regions resembled motifs found in NAD+/H-dependent enzymes of the FNR family. Therefore, the "rational approach" did not succeed well, and coenzyme specificity redesign in the FNR family will be more complex than that anticipated in other NADP+/NAD+ families.

Protein motifs involved in coenzyme interaction and enzymatic efficiency in anabaena ferredoxin-NADP+ reductase.,Peregrina JR, Herguedas B, Hermoso JA, Martinez-Julvez M, Medina M Biochemistry. 2009 Apr 14;48(14):3109-19. PMID:19219975[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Peregrina JR, Herguedas B, Hermoso JA, Martinez-Julvez M, Medina M. Protein motifs involved in coenzyme interaction and enzymatic efficiency in anabaena ferredoxin-NADP+ reductase. Biochemistry. 2009 Apr 14;48(14):3109-19. PMID:19219975 doi:10.1021/bi802077c

2vyq, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA