2vgn
Structure of S. cerevisiae Dom34, a translation termination-like factor involved in RNA quality control pathways and interacting with Hbs1 (SelenoMet-labeled protein)Structure of S. cerevisiae Dom34, a translation termination-like factor involved in RNA quality control pathways and interacting with Hbs1 (SelenoMet-labeled protein)
Structural highlights
Function[DOM34_YEAST] Involved in protein translation. Together with HBS1, may function in recognizing stalled ribosomes and triggering endonucleolytic cleavage of the mRNA, a mechanism to release non-functional ribosomes and degrade damaged mRNAs. The complex formed by DOM34 and HBS1 has ribonuclease activity towards double-stranded RNA substrates, but does not cleave single-stranded RNA. Acts as endonuclease; has no exonuclease activity. Increases the affinity of HBS1 for GTP, but nor for GDP. Promotes G1 progression and differentiation and is involved in mitotic and meiotic cell divisions.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe yeast protein Dom34 has been described to play a critical role in a newly identified mRNA decay pathway called No-Go decay. This pathway clears cells from mRNAs inducing translational stalls through endonucleolytic cleavage. Dom34 is related to the translation termination factor eRF1 and physically interacts with Hbs1, which is itself related to eRF3. We have solved the 2.5-A resolution crystal structure of Saccharomyces cerevisiae Dom34. This protein is organized in three domains with the central and C-terminal domains structurally homologous to those from eRF1. The N-terminal domain of Dom34 is different from eRF1. It adopts a Sm-fold that is often involved in the recognition of mRNA stem loops or in the recruitment of mRNA degradation machinery. The comparison of eRF1 and Dom34 domains proposed to interact directly with eRF3 and Hbs1, respectively, highlights striking structural similarities with eRF1 motifs identified to be crucial for the binding to eRF3. In addition, as observed for eRF1 that enhances eRF3 binding to GTP, the interaction of Dom34 with Hbs1 results in an increase in the affinity constant of Hbs1 for GTP but not GDP. Taken together, these results emphasize that eukaryotic cells have evolved two structurally related complexes able to interact with ribosomes either paused at a stop codon or stalled in translation by the presence of a stable stem loop and to trigger ribosome release by catalyzing chemical bond hydrolysis. Structure of yeast Dom34: a protein related to translation termination factor Erf1 and involved in No-Go decay.,Graille M, Chaillet M, van Tilbeurgh H J Biol Chem. 2008 Mar 14;283(11):7145-54. Epub 2008 Jan 7. PMID:18180287[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|