2vba

From Proteopedia
Jump to navigation Jump to search

beta-ketoacyl-ACP synthase I (KAS) from E. coli with bound amino- thiazole inhibitorbeta-ketoacyl-ACP synthase I (KAS) from E. coli with bound amino- thiazole inhibitor

Structural highlights

2vba is a 4 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.36Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FABB_ECOLI Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Fatty-acid synthesis in bacteria is of great interest as a target for the discovery of antibacterial compounds. The addition of a new acetyl moiety to the growing fatty-acid chain, an essential step in this process, is catalyzed by beta-ketoacyl-ACP synthase (KAS). It is inhibited by natural antibiotics such as cerulenin and thiolactomycin; however, these lack the requirements for optimal drug development. Structure-based biophysical screening revealed a novel synthetic small molecule, 2-phenylamino-4-methyl-5-acetylthiazole, that binds to Escherichia coli KAS I with a binding constant of 25 microM as determined by fluorescence titration. A 1.35 A crystal structure of its complex with its target reveals noncovalent interactions with the active-site Cys163 and hydrophobic residues of the fatty-acid binding pocket. The active site is accessible through an open conformation of the Phe392 side chain and no conformational changes are induced at the active site upon ligand binding. This represents a novel binding mode that differs from thiolactomycin or cerulenin interaction. The structural information on the protein-ligand interaction offers strategies for further optimization of this low-molecular-weight compound.

Structure-assisted discovery of an aminothiazole derivative as a lead molecule for inhibition of bacterial fatty-acid synthesis.,Pappenberger G, Schulz-Gasch T, Kusznir E, Muller F, Hennig M Acta Crystallogr D Biol Crystallogr. 2007 Dec;63(Pt 12):1208-16. Epub 2007, Nov 16. PMID:18084068[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pappenberger G, Schulz-Gasch T, Kusznir E, Muller F, Hennig M. Structure-assisted discovery of an aminothiazole derivative as a lead molecule for inhibition of bacterial fatty-acid synthesis. Acta Crystallogr D Biol Crystallogr. 2007 Dec;63(Pt 12):1208-16. Epub 2007, Nov 16. PMID:18084068 doi:10.1107/S0907444907049852

2vba, resolution 1.36Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA