2v5r

From Proteopedia
Jump to navigation Jump to search

Structural basis for Dscam isoform specificityStructural basis for Dscam isoform specificity

Structural highlights

2v5r is a 2 chain structure with sequence from Drosophila melanogaster. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DSCA1_DROME Cell surface receptor involved in guidance and targeting of growing nerve axons (PubMed:10892653). Required during Bolwig's organ differentiation for accurate and efficient targeting of photoreceptor neuron axons to their synaptic targets in the brain via the P2 intermediate target neuron (PubMed:10892653). Involved in isoneural self-avoidance during dendrite arborization but not in heteroneural recognition and repulsion during tiling by related neurons of the same class (PubMed:17482551). Involved in regulating axon bifurcation and divergent extension in the developing mushroom body (PubMed:11856530, PubMed:15339648). Essential for axon arborisation in ellipsoid body (PubMed:11856530, PubMed:15339648). Exhibits an extraordinary level of molecular diversity resulting from alternative splicing (PubMed:10892653). Isoforms differing in their ectodomain makeup show a high degree of functional redundancy while isoforms with different transmembrane domains are involved in different neuronal morphogenetic processes and are differentially targeted to dendrites or axons (PubMed:15339648). The vast majority of isoforms exhibit strong isoform-specific homophilic binding (PubMed:15339666, PubMed:17889655). Individual cells express a distinct randomly generated repertoire of isoforms (PubMed:14758360). Cell surfaces bearing identical repertoires of Dscam1 isoforms, such as those from the same cell, trigger recognition and avoidance (PubMed:17482551). A subset of isoforms is expressed in fat body cells and hemocytes, cells that are part of the insect immune response, and these isoforms are secreted into the hemolymph (PubMed:16109846). The secreted form comprising the ectodomain can bind to bacteria, such as Escherichia coli, and may act as an opsonin enhancing their phagocytosis by hemocytes (PubMed:16109846).[1] [2] [3] [4] [5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Dscam gene gives rise to thousands of diverse cell surface receptors thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

Structural basis of Dscam isoform specificity.,Meijers R, Puettmann-Holgado R, Skiniotis G, Liu JH, Walz T, Wang JH, Schmucker D Nature. 2007 Sep 27;449(7161):487-91. Epub 2007 Aug 26. PMID:17721508[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J, Muda M, Dixon JE, Zipursky SL. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell. 2000 Jun 9;101(6):671-84. PMID:10892653 doi:10.1016/s0092-8674(00)80878-8
  2. Wang J, Zugates CT, Liang IH, Lee CH, Lee T. Drosophila Dscam is required for divergent segregation of sister branches and suppresses ectopic bifurcation of axons. Neuron. 2002 Feb 14;33(4):559-71. PMID:11856530 doi:10.1016/s0896-6273(02)00570-6
  3. Neves G, Zucker J, Daly M, Chess A. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nat Genet. 2004 Mar;36(3):240-6. PMID:14758360 doi:10.1038/ng1299
  4. Wang J, Ma X, Yang JS, Zheng X, Zugates CT, Lee CH, Lee T. Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron. 2004 Sep 2;43(5):663-72. PMID:15339648 doi:10.1016/j.neuron.2004.06.033
  5. Wojtowicz WM, Flanagan JJ, Millard SS, Zipursky SL, Clemens JC. Alternative splicing of Drosophila Dscam generates axon guidance receptors that exhibit isoform-specific homophilic binding. Cell. 2004 Sep 3;118(5):619-33. PMID:15339666 doi:10.1016/j.cell.2004.08.021
  6. Watson FL, Püttmann-Holgado R, Thomas F, Lamar DL, Hughes M, Kondo M, Rebel VI, Schmucker D. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science. 2005 Sep 16;309(5742):1874-8. PMID:16109846 doi:10.1126/science.1116887
  7. Matthews BJ, Kim ME, Flanagan JJ, Hattori D, Clemens JC, Zipursky SL, Grueber WB. Dendrite self-avoidance is controlled by Dscam. Cell. 2007 May 4;129(3):593-604. PMID:17482551 doi:10.1016/j.cell.2007.04.013
  8. Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell. 2007 Sep 21;130(6):1134-45. PMID:17889655 doi:10.1016/j.cell.2007.08.026
  9. Meijers R, Puettmann-Holgado R, Skiniotis G, Liu JH, Walz T, Wang JH, Schmucker D. Structural basis of Dscam isoform specificity. Nature. 2007 Sep 27;449(7161):487-91. Epub 2007 Aug 26. PMID:17721508 doi:10.1038/nature06147

2v5r, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA