2rdl

From Proteopedia
Jump to navigation Jump to search

Hamster Chymase 2Hamster Chymase 2

Structural highlights

2rdl is a 4 chain structure with sequence from Mesocricetus auratus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

O70164_MESAU

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Divergence of substrate specificity within the context of a common structural framework represents an important mechanism by which new enzyme activity naturally evolves. We present enzymological and x-ray structural data for hamster chymase-2 (HAM2) that provides a detailed explanation for the unusual hydrolytic specificity of this rodent alpha-chymase. In enzymatic characterization, hamster chymase-1 (HAM1) showed typical chymase proteolytic activity. In contrast, HAM2 exhibited atypical substrate specificity, cleaving on the carboxyl side of the P1 substrate residues Ala and Val, characteristic of elastolytic rather than chymotryptic specificity. The 2.5-A resolution crystal structure of HAM2 complexed to the peptidyl inhibitor MeOSuc-Ala-Ala-Pro-Ala-chloromethylketone revealed a narrow and shallow S1 substrate binding pocket that accommodated only a small hydrophobic residue (e.g. Ala or Val). The different substrate specificities of HAM2 and HAM1 are explained by changes in four S1 substrate site residues (positions 189, 190, 216, and 226). Of these, Asn(189), Val(190), and Val(216) form an easily identifiable triplet in all known rodent alpha-chymases that can be used to predict elastolytic specificity for novel chymase-like sequences. Phylogenetic comparison defines guinea pig and rabbit chymases as the closest orthologs to rodent alpha-chymases.

Structural basis for elastolytic substrate specificity in rodent alpha-chymases.,Kervinen J, Abad M, Crysler C, Kolpak M, Mahan AD, Masucci JA, Bayoumy S, Cummings MD, Yao X, Olson M, de Garavilla L, Kuo L, Deckman I, Spurlino J J Biol Chem. 2008 Jan 4;283(1):427-36. Epub 2007 Oct 31. PMID:17981788[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Kervinen J, Abad M, Crysler C, Kolpak M, Mahan AD, Masucci JA, Bayoumy S, Cummings MD, Yao X, Olson M, de Garavilla L, Kuo L, Deckman I, Spurlino J. Structural basis for elastolytic substrate specificity in rodent alpha-chymases. J Biol Chem. 2008 Jan 4;283(1):427-36. Epub 2007 Oct 31. PMID:17981788 doi:10.1074/jbc.M707157200

2rdl, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA