2qjs

From Proteopedia
Jump to navigation Jump to search

Stenotrophomonas maltophilia L1 metallo-beta-lactamase Asp-120 Asn mutantStenotrophomonas maltophilia L1 metallo-beta-lactamase Asp-120 Asn mutant

Structural highlights

2qjs is a 4 chain structure with sequence from Stenotrophomonas maltophilia. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.25Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

BLA1_STEMA Has a high activity against imipenem.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Metallo-beta-lactamases (mbetals) are zinc-dependent enzymes that hydrolyze a wide range of beta-lactam antibiotics. The mbetal active site features an invariant Asp-120 that ligates one of the two metal ions (Zn2) and a metal-bridging water/hydroxide (Wat1). Previous studies show that substitutions at Asp-120 dramatically affect mbetal activity, but no consensus exists as to its role in beta-lactam turnover. Here we present crystal structures of the Asn and Cys mutants of Asp-120 of the L1 mbetal from Stenotrophomonas maltophilia. Both mutants retain a dinuclear zinc center with Wat1 present. In the essentially inactive Cys enzyme Zn2 is displaced to a more buried position relative to that in the wild-type enzyme. In the catalytically impaired Asn enzyme the coordination of Zn2 is altered, neither it nor Wat1 is coordinated by Asn-120, and the N-terminal 19 amino acids, important to cooperative interactions between subunits in the wild-type enzyme, are disordered. Comparison with the structure of L1 complexed with the hydrolyzed oxacephem moxalactam suggests that in the Cys mutant Zn2 can no longer make stabilizing interactions with anionic nitrogen species formed in the hydrolytic reaction. The diminished activity of the Asn mutant arises from a combination of loss of intersubunit interactions and impaired proton transfer to, and reduced interaction of Zn2 with, the substrate amide nitrogen. We conclude that, while interactions of Asp-120 with active site water molecules are important to proton transfer and possibly nucleophilic attack by Wat1, its primary role is to optimally position Zn2 for catalytically important interactions with the charged amide nitrogen of substrate.

Structural basis for the role of Asp-120 in metallo-beta-lactamases.,Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J Biochemistry. 2007 Sep 18;46(37):10664-74. Epub 2007 Aug 23. PMID:17715946[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Crisp J, Conners R, Garrity JD, Carenbauer AL, Crowder MW, Spencer J. Structural basis for the role of Asp-120 in metallo-beta-lactamases. Biochemistry. 2007 Sep 18;46(37):10664-74. Epub 2007 Aug 23. PMID:17715946 doi:10.1021/bi700707u

2qjs, resolution 2.25Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA