2pmt

From Proteopedia
Jump to navigation Jump to search

GLUTATHIONE TRANSFERASE FROM PROTEUS MIRABILISGLUTATHIONE TRANSFERASE FROM PROTEUS MIRABILIS

Structural highlights

2pmt is a 4 chain structure with sequence from Proteus mirabilis. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.7Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GST_PROMI Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: Glutathione S-transferases (GSTs) are a multifunctional group of enzymes, widely distributed in aerobic organisms, that have a critical role in the cellular detoxification process. Unlike their mammalian counterparts, bacterial GSTs often catalyze quite specific reactions, suggesting that their roles in bacteria might be different. The GST from Proteus mirabilis (PmGST B1-1) is known to bind certain antibiotics tightly and reduce the antimicrobial activity of beta-lactam drugs. Hence, bacterial GSTs may play a part in bacterial resistance towards antibiotics and are the subject of intense interest. RESULTS: Here we present the structure of a bacterial GST, PmGST B1-1, which has been determined from two different crystal forms. The enzyme adopts the canonical GST fold although it shares less than 20% sequence identity with GSTs from higher organisms. The most surprising aspect of the structure is the observation that the substrate, glutathione, is covalently bound to Cys 10 of the enzyme. In addition, the highly structurally conserved N-terminal domain is found to have an additional beta strand. CONCLUSIONS: The crystal structure of PmGST B1-1 has highlighted the importance of a cysteine residue in the catalytic cycle. Sequence analyses suggest that a number of other GSTs share this property, leading us to propose a new class of GSTs - the beta class. The data suggest that the in vivo role of the beta class GSTs could be as metabolic or redox enzymes rather than conjugating enzymes. Compelling evidence is presented that the theta class of GSTs evolved from an ancestral member of the thioredoxin superfamily.

A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications.,Rossjohn J, Polekhina G, Feil SC, Allocati N, Masulli M, De Illio C, Parker MW Structure. 1998 Jun 15;6(6):721-34. PMID:9655824[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rossjohn J, Polekhina G, Feil SC, Allocati N, Masulli M, De Illio C, Parker MW. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Structure. 1998 Jun 15;6(6):721-34. PMID:9655824

2pmt, resolution 2.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA