2nrf
Crystal Structure of GlpG, a Rhomboid family intramembrane proteaseCrystal Structure of GlpG, a Rhomboid family intramembrane protease
Structural highlights
FunctionGLPG_ECOLI Rhomboid-type serine protease that catalyzes intramembrane proteolysis.[1] [2] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedIntramembrane proteolysis regulates diverse biological processes. Cleavage of substrate peptide bonds within the membrane bilayer is catalyzed by integral membrane proteases. Here we report the crystal structure of the transmembrane core domain of GlpG, a rhomboid-family intramembrane serine protease from Escherichia coli. The protein contains six transmembrane helices, with the catalytic Ser201 located at the N terminus of helix alpha4 approximately 10 A below the membrane surface. Access to water molecules is provided by a central cavity that opens to the extracellular region and converges on Ser201. One of the two GlpG molecules in the asymmetric unit has an open conformation at the active site, with the transmembrane helix alpha5 bent away from the rest of the molecule. Structural analysis suggests that substrate entry to the active site is probably gated by the movement of helix alpha5. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry.,Wu Z, Yan N, Feng L, Oberstein A, Yan H, Baker RP, Gu L, Jeffrey PD, Urban S, Shi Y Nat Struct Mol Biol. 2006 Dec;13(12):1084-91. Epub 2006 Nov 10. PMID:17099694[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|