2j9q

From Proteopedia
Jump to navigation Jump to search

A novel conformation for the TPR domain of pex5pA novel conformation for the TPR domain of pex5p

Structural highlights

2j9q is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.65Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

PEX5_HUMAN Defects in PEX5 are the cause of peroxisome biogenesis disorder 2A (PBD2A) [MIM:214110. A fatal peroxisome biogenesis disorder belonging to the Zellweger disease spectrum and characterized clinically by severe neurologic dysfunction with profound psychomotor retardation, severe hypotonia and neonatal seizures, craniofacial abnormalities, liver dysfunction, and biochemically by the absence of peroxisomes. Additional features include cardiovascular and skeletal defects, renal cysts, ocular abnormalities, and hearing impairment. Most severely affected individuals with the classic form of the disease (classic Zellweger syndrome) die within the first year of life.[1] Defects in PEX5 are the cause of peroxisome biogenesis disorder 2B (PBD2B) [MIM:202370. A peroxisome biogenesis disorder that includes neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD), two milder manifestations of the Zellweger disease spectrum. The clinical course of patients with the NALD and IRD presentation is variable and may include developmental delay, hypotonia, liver dysfunction, sensorineural hearing loss, retinal dystrophy and vision impairment. Children with the NALD presentation may reach their teens, while patients with the IRD presentation may reach adulthood. The clinical conditions are often slowly progressive in particular with respect to loss of hearing and vision. The biochemical abnormalities include accumulation of phytanic acid, very long chain fatty acids (VLCFA), di- and trihydroxycholestanoic acid and pipecolic acid.

Function

PEX5_HUMAN Binds to the C-terminal PTS1-type tripeptide peroxisomal targeting signal (SKL-type) and plays an essential role in peroxisomal protein import.[2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The C-terminal tetratricopeptide (TPR) repeat domain of Pex5p recognises proteins carrying a peroxisomal targeting signal type 1 (PTS1) tripeptide in their C-terminus. Previously, structural data have been obtained from the TPR domain of Pex5p in both the liganded and unliganded states, indicating a conformational change taking place upon cargo protein binding. Such a conformational change would be expected to play a major role both during PTS1 protein recognition as well as in cargo release into the peroxisomal lumen. However, little information is available on the factors that may regulate such structural changes. RESULTS: We have used a range of biophysical and computational methods to further analyse the conformational flexibility and ligand binding of Pex5p. A new crystal form for the human Pex5p C-terminal domain (Pex5p(C)) was obtained in the presence of Sr2+ ions, and the structure presents a novel conformation, distinct from all previous liganded and apo crystal structures for Pex5p(C). The difference relates to a near-rigid body movement of two halves of the molecule, and this movement is different from that required to reach a ring-like conformation upon PTS1 ligand binding. The bound Sr2+ ion changes the dynamic properties of Pex5p(C) affecting its conformation, possibly by making the Sr2+-binding loop - located near the hinge region for the observed domain motions - more rigid. CONCLUSION: The current data indicate that Pex5p(C) is able to sample a range of conformational states in the absence of bound PTS1 ligand. The domain movements between various apo conformations are distinct from those involved in ligand binding, although the differences between all observed conformations so far can be characterised by the movement of the two halves of Pex5p(C) as near-rigid bodies with respect to each other.

A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding.,Stanley WA, Pursiainen NV, Garman EF, Juffer AH, Wilmanns M, Kursula P BMC Struct Biol. 2007 Apr 11;7:24. PMID:17428317[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet. 1995 Feb;9(2):115-25. PMID:7719337 doi:http://dx.doi.org/10.1038/ng0295-115
  2. Dodt G, Braverman N, Wong C, Moser A, Moser HW, Watkins P, Valle D, Gould SJ. Mutations in the PTS1 receptor gene, PXR1, define complementation group 2 of the peroxisome biogenesis disorders. Nat Genet. 1995 Feb;9(2):115-25. PMID:7719337 doi:http://dx.doi.org/10.1038/ng0295-115
  3. Wiemer EA, Nuttley WM, Bertolaet BL, Li X, Francke U, Wheelock MJ, Anne UK, Johnson KR, Subramani S. Human peroxisomal targeting signal-1 receptor restores peroxisomal protein import in cells from patients with fatal peroxisomal disorders. J Cell Biol. 1995 Jul;130(1):51-65. PMID:7790377
  4. Fransen M, Brees C, Baumgart E, Vanhooren JC, Baes M, Mannaerts GP, Van Veldhoven PP. Identification and characterization of the putative human peroxisomal C-terminal targeting signal import receptor. J Biol Chem. 1995 Mar 31;270(13):7731-6. PMID:7706321
  5. Stanley WA, Pursiainen NV, Garman EF, Juffer AH, Wilmanns M, Kursula P. A previously unobserved conformation for the human Pex5p receptor suggests roles for intrinsic flexibility and rigid domain motions in ligand binding. BMC Struct Biol. 2007 Apr 11;7:24. PMID:17428317 doi:10.1186/1472-6807-7-24

2j9q, resolution 2.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA