2ioc

From Proteopedia
Jump to navigation Jump to search

The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partenringThe crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partenring

Structural highlights

2ioc is a 2 chain structure with sequence from Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TREX1_MOUSE Exonuclease with a preference for double stranded DNA with mismatched 3' termini. May play a role in DNA repair.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The TREX1 enzyme processes DNA ends as the major 3' --> 5' exonuclease activity in human cells. Mutations in the TREX1 gene are an underlying cause of the neurological brain disease Aicardi-Goutieres syndrome implicating TREX1 dysfunction in an aberrant immune response. TREX1 action during apoptosis likely prevents autoimmune reaction to DNA that would otherwise persist. To understand the impact of TREX1 mutations identified in patients with Aicardi-Goutieres syndrome on structure and activity we determined the x-ray crystal structure of the dimeric mouse TREX1 protein in substrate and product complexes containing single-stranded DNA and deoxyadenosine monophosphate, respectively. The structures show the specific interactions between the bound nucleotides and the residues lining the binding pocket of the 3' terminal nucleotide within the enzyme active site that account for specificity, and provide the molecular basis for understanding mutations that lead to disease. Three mutant forms of TREX1 protein identified in patients with Aicardi-Goutieres syndrome were prepared and the measured activities show that these specific mutations reduce enzyme activity by 4-35,000-fold. The structure also reveals an 8-amino acid polyproline II helix within the TREX1 enzyme that suggests a mechanism for interactions of this exonuclease with other protein complexes.

The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering.,de Silva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T J Biol Chem. 2007 Apr 6;282(14):10537-43. Epub 2007 Feb 9. PMID:17293595[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'-->5' exonucleases. J Biol Chem. 1999 Jul 9;274(28):19655-60. PMID:10391904
  2. Mazur DJ, Perrino FW. Excision of 3' termini by the Trex1 and TREX2 3'-->5' exonucleases. Characterization of the recombinant proteins. J Biol Chem. 2001 May 18;276(20):17022-9. Epub 2001 Mar 6. PMID:11279105 doi:http://dx.doi.org/10.1074/jbc.M100623200
  3. de Silva U, Choudhury S, Bailey SL, Harvey S, Perrino FW, Hollis T. The crystal structure of TREX1 explains the 3' nucleotide specificity and reveals a polyproline II helix for protein partnering. J Biol Chem. 2007 Apr 6;282(14):10537-43. Epub 2007 Feb 9. PMID:17293595 doi:10.1074/jbc.M700039200

2ioc, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA