2efg
TRANSLATIONAL ELONGATION FACTOR G COMPLEXED WITH GDPTRANSLATIONAL ELONGATION FACTOR G COMPLEXED WITH GDP
Structural highlights
FunctionEFG_THET8 Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedElongation factor G (EF-G) catalyzes the translocation step of protein synthesis in bacteria, and like the other bacterial elongation factor, EF-Tu--whose structure is already known--it is a member of the GTPase superfamily. We have determined the crystal structure of EF-G--GDP from Thermus thermophilus. It is an elongated molecule whose large, N-terminal domain resembles the G domain of EF-Tu, except for a 90 residue insert, which covers a surface that is involved in nucleotide exchange in EF-Tu and other G proteins. The tertiary structures of the second domains of EF-G and EF-Tu are nearly identical, but the relative placement of the first two domains in EF-G--GDP resembles that seen in EF-Tu--GTP, not EF-Tu--GDP. The remaining three domains of EF-G look like RNA binding domains, and have no counterparts in EF-Tu. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution.,Czworkowski J, Wang J, Steitz TA, Moore PB EMBO J. 1994 Aug 15;13(16):3661-8. PMID:8070396[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|