2cvd

From Proteopedia
Jump to navigation Jump to search

Crystal structure analysis of human hematopoietic prostaglandin D synthase complexed with HQL-79Crystal structure analysis of human hematopoietic prostaglandin D synthase complexed with HQL-79

Structural highlights

2cvd is a 4 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.45Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HPGDS_HUMAN Bifunctional enzyme which catalyzes both the conversion of PGH2 to PGD2, a prostaglandin involved in smooth muscle contraction/relaxation and a potent inhibitor of platelet aggregation, and the conjugation of glutathione with a wide range of aryl halides and organic isothiocyanates. Also exhibits low glutathione-peroxidase activity towards cumene hydroperoxide.[1] [2] [3] [4] [5] [6] [7] [8]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

We determined the crystal structure of human hematopoietic prostaglandin (PG) D synthase (H-PGDS) as the quaternary complex with glutathione (GSH), Mg2+, and an inhibitor, HQL-79, having anti-inflammatory activities in vivo, at a 1.45-A resolution. In the quaternary complex, HQL-79 was found to reside within the catalytic cleft between Trp104 and GSH. HQL-79 was stabilized by interaction of a phenyl ring of its diphenyl group with Trp104 and by its piperidine group with GSH and Arg14 through water molecules, which form a network with hydrogen bonding and salt bridges linked to Mg2+. HQL-79 inhibited human H-PGDS competitively against the substrate PGH2 and non-competitively against GSH with Ki of 5 and 3 microm, respectively. Surface plasmon resonance analysis revealed that HQL-79 bound to H-PGDS with an affinity that was 12-fold higher in the presence of GSH and Mg2+ (Kd, 0.8 microm) than in their absence. Mutational studies revealed that Arg14 was important for the Mg2+-mediated increase in the binding affinity of H-PGDS for HQL-79, and that Trp104, Lys112, and Lys198 were important for maintaining the HQL-binding pocket. HQL-79 selectively inhibited PGD2 production by H-PGDS-expressing human megakaryocytes and rat mastocytoma cells with an IC50 value of about 100 microm but only marginally affected the production of other prostanoids, suggesting the tight functional engagement between H-PGDS and cyclooxygenase. Orally administered HQL-79 (30 mg/kg body weight) inhibited antigen-induced production of PGD2, without affecting the production of PGE2 and PGF2alpha, and ameliorated airway inflammation in wild-type and human H-PGDS-overexpressing mice. Knowledge about this structure of quaternary complex is useful for understanding the inhibitory mechanism of HQL-79 and should accelerate the structure-based development of novel anti-inflammatory drugs that inhibit PGD2 production specifically.

Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase.,Aritake K, Kado Y, Inoue T, Miyano M, Urade Y J Biol Chem. 2006 Jun 2;281(22):15277-86. Epub 2006 Mar 17. PMID:16547010[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kanaoka Y, Fujimori K, Kikuno R, Sakaguchi Y, Urade Y, Hayaishi O. Structure and chromosomal localization of human and mouse genes for hematopoietic prostaglandin D synthase. Conservation of the ancestral genomic structure of sigma-class glutathione S-transferase. Eur J Biochem. 2000 Jun;267(11):3315-22. PMID:10824118
  2. Jowsey IR, Thomson AM, Flanagan JU, Murdock PR, Moore GB, Meyer DJ, Murphy GJ, Smith SA, Hayes JD. Mammalian class Sigma glutathione S-transferases: catalytic properties and tissue-specific expression of human and rat GSH-dependent prostaglandin D2 synthases. Biochem J. 2001 Nov 1;359(Pt 3):507-16. PMID:11672424
  3. Suzuki T, Watanabe K, Kanaoka Y, Sato T, Hayaishi O. Induction of hematopoietic prostaglandin D synthase in human megakaryocytic cells by phorbol ester. Biochem Biophys Res Commun. 1997 Dec 18;241(2):288-93. PMID:9425264 doi:http://dx.doi.org/10.1006/bbrc.1997.7803
  4. Mahmud I, Ueda N, Yamaguchi H, Yamashita R, Yamamoto S, Kanaoka Y, Urade Y, Hayaishi O. Prostaglandin D synthase in human megakaryoblastic cells. J Biol Chem. 1997 Nov 7;272(45):28263-6. PMID:9353279
  5. Inoue T, Irikura D, Okazaki N, Kinugasa S, Matsumura H, Uodome N, Yamamoto M, Kumasaka T, Miyano M, Kai Y, Urade Y. Mechanism of metal activation of human hematopoietic prostaglandin D synthase. Nat Struct Biol. 2003 Apr;10(4):291-6. PMID:12627223 doi:10.1038/nsb907
  6. Inoue T, Okano Y, Kado Y, Aritake K, Irikura D, Uodome N, Okazaki N, Kinugasa S, Shishitani H, Matsumura H, Kai Y, Urade Y. First determination of the inhibitor complex structure of human hematopoietic prostaglandin D synthase. J Biochem. 2004 Mar;135(3):279-83. PMID:15113825
  7. Aritake K, Kado Y, Inoue T, Miyano M, Urade Y. Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase. J Biol Chem. 2006 Jun 2;281(22):15277-86. Epub 2006 Mar 17. PMID:16547010 doi:10.1074/jbc.M506431200
  8. Weber JE, Oakley AJ, Christ AN, Clark AG, Hayes JD, Hall R, Hume DA, Board PG, Smythe ML, Flanagan JU. Identification and characterisation of new inhibitors for the human hematopoietic prostaglandin D2 synthase. Eur J Med Chem. 2010 Feb;45(2):447-54. Epub 2009 Oct 23. PMID:19939518 doi:10.1016/j.ejmech.2009.10.025
  9. Aritake K, Kado Y, Inoue T, Miyano M, Urade Y. Structural and functional characterization of HQL-79, an orally selective inhibitor of human hematopoietic prostaglandin D synthase. J Biol Chem. 2006 Jun 2;281(22):15277-86. Epub 2006 Mar 17. PMID:16547010 doi:10.1074/jbc.M506431200

2cvd, resolution 1.45Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA