2cf2
Architecture of mammalian fatty acid synthaseArchitecture of mammalian fatty acid synthase
Structural highlights
FunctionFABB_ECOLI Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe homodimeric mammalian fatty acid synthase is one of the most complex cellular multienzymes, in that each 270-kilodalton polypeptide chain carries all seven functional domains required for fatty acid synthesis. We have calculated a 4.5 angstrom-resolution x-ray crystallographic map of porcine fatty acid synthase, highly homologous to the human multienzyme, and placed homologous template structures of all individual catalytic domains responsible for the cyclic elongation of fatty acid chains into the electron density. The positioning of domains reveals the complex architecture of the multienzyme forming an intertwined dimer with two lateral semicircular reaction chambers, each containing a full set of catalytic domains required for fatty acid elongation. Large distances between active sites and conformational differences between the reaction chambers demonstrate that mobility of the acyl carrier protein and general flexibility of the multienzyme must accompany handover of the reaction intermediates during the reaction cycle. Architecture of mammalian fatty acid synthase at 4.5 A resolution.,Maier T, Jenni S, Ban N Science. 2006 Mar 3;311(5765):1258-62. PMID:16513975[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|