2bdl

From Proteopedia
Jump to navigation Jump to search

Cathepsin K complexed with a pyrrolidine ketoamide-based inhibitorCathepsin K complexed with a pyrrolidine ketoamide-based inhibitor

Structural highlights

2bdl is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

CATK_HUMAN Defects in CTSK are the cause of pycnodysostosis (PKND) [MIM:265800. PKND is an autosomal recessive osteochondrodysplasia characterized by osteosclerosis and short stature.[1] [2] [3] [4]

Function

CATK_HUMAN Closely involved in osteoclastic bone resorption and may participate partially in the disorder of bone remodeling. Displays potent endoprotease activity against fibrinogen at acid pH. May play an important role in extracellular matrix degradation.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Starting from a potent pantolactone ketoamide cathepsin K inhibitor discovered from structural screening, conversion of the lactone scaffold to a pyrrolidine scaffold allowed exploration of the S(3) subsite of cathepsin K. Manipulation of P3 and P1' groups afforded potent inhibitors with drug-like properties.

Novel, potent P2-P3 pyrrolidine derivatives of ketoamide-based cathepsin K inhibitors.,Barrett DG, Catalano JG, Deaton DN, Hassell AM, Long ST, Miller AB, Miller LR, Ray JA, Samano V, Shewchuk LM, Wells-Knecht KJ, Willard DH Jr, Wright LL Bioorg Med Chem Lett. 2006 Mar 15;16(6):1735-9. Epub 2006 Jan 11. PMID:16376075[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gelb BD, Shi GP, Chapman HA, Desnick RJ. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996 Aug 30;273(5279):1236-8. PMID:8703060
  2. Gelb BD, Willner JP, Dunn TM, Kardon NB, Verloes A, Poncin J, Desnick RJ. Paternal uniparental disomy for chromosome 1 revealed by molecular analysis of a patient with pycnodysostosis. Am J Hum Genet. 1998 Apr;62(4):848-54. PMID:9529353 doi:S0002-9297(07)60977-X
  3. Ho N, Punturieri A, Wilkin D, Szabo J, Johnson M, Whaley J, Davis J, Clark A, Weiss S, Francomano C. Mutations of CTSK result in pycnodysostosis via a reduction in cathepsin K protein. J Bone Miner Res. 1999 Oct;14(10):1649-53. PMID:10491211
  4. Haagerup A, Hertz JM, Christensen MF, Binderup H, Kruse TA. Cathepsin K gene mutations and 1q21 haplotypes in at patients with pycnodysostosis in an outbred population. Eur J Hum Genet. 2000 Jun;8(6):431-6. PMID:10878663 doi:10.1038/sj.ejhg.5200481
  5. Barrett DG, Catalano JG, Deaton DN, Hassell AM, Long ST, Miller AB, Miller LR, Ray JA, Samano V, Shewchuk LM, Wells-Knecht KJ, Willard DH Jr, Wright LL. Novel, potent P2-P3 pyrrolidine derivatives of ketoamide-based cathepsin K inhibitors. Bioorg Med Chem Lett. 2006 Mar 15;16(6):1735-9. Epub 2006 Jan 11. PMID:16376075 doi:10.1016/j.bmcl.2005.11.101

2bdl, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA