2aqz

From Proteopedia
Jump to navigation Jump to search

Crystal structure of FGF-1, S17T/N18T/G19 deletion mutantCrystal structure of FGF-1, S17T/N18T/G19 deletion mutant

Structural highlights

2aqz is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.85Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

FGF1_HUMAN Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.[1] [2] [3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Human acidic fibroblast growth factor (FGF-1) is a member of the beta-trefoil superfold, a protein architecture that exhibits a characteristic threefold axis of structural symmetry. FGF-1 contains 11 beta-turns, the majority being type I 3:5; however, a type I 4:6 turn is also found at three symmetry-related locations. The relative uniqueness of the type I 4:6 turn in the FGF-1 structure suggests it may play a key role in the stability, folding, or function of the protein. To test this hypothesis a series of deletion mutations were constructed, the aim of which was to convert existing type I 4:6 turns at two locations into type I 3:5 turns. The results show it is possible to successfully substitute the type I 4:6 turn by a type I 3:5 turn with minimal impact upon protein stability or folding. Thus, these different turn structures, even though they differ in length, exhibit similar energetic properties. Additional sequence swapping mutations within the introduced type I 3:5 turns suggests that the turn sequence primarily affects stability but not turn structure (which appears dictated primarily by the local environment). Although the results suggest that a stable, foldable beta-trefoil protein may be designed utilizing a single turn type (type I 3:5), a type I 4:6 turn at turn 1 of FGF-1 appears essential for efficient mitogenic function.

Conversion of type I 4:6 to 3:5 beta-turn types in human acidic fibroblast growth factor: effects upon structure, stability, folding, and mitogenic function.,Lee J, Dubey VK, Somasundaram T, Blaber M Proteins. 2006 Mar 15;62(3):686-97. PMID:16355415[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292-7. PMID:8663044
  2. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006 Jun 9;281(23):15694-700. Epub 2006 Apr 4. PMID:16597617 doi:10.1074/jbc.M601252200
  3. Fernandez IS, Cuevas P, Angulo J, Lopez-Navajas P, Canales-Mayordomo A, Gonzalez-Corrochano R, Lozano RM, Valverde S, Jimenez-Barbero J, Romero A, Gimenez-Gallego G. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem. 2010 Apr 9;285(15):11714-29. Epub 2010 Feb 9. PMID:20145243 doi:10.1074/jbc.M109.064618
  4. Lee J, Dubey VK, Somasundaram T, Blaber M. Conversion of type I 4:6 to 3:5 beta-turn types in human acidic fibroblast growth factor: effects upon structure, stability, folding, and mitogenic function. Proteins. 2006 Mar 15;62(3):686-97. PMID:16355415 doi:http://dx.doi.org/10.1002/prot.20808

2aqz, resolution 1.85Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA