2a0q
Structure of thrombin in 400 mM potassium chlorideStructure of thrombin in 400 mM potassium chloride
Structural highlights
DiseaseTHRB_HUMAN Defects in F2 are the cause of factor II deficiency (FA2D) [MIM:613679. It is a very rare blood coagulation disorder characterized by mucocutaneous bleeding symptoms. The severity of the bleeding manifestations correlates with blood factor II levels.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Genetic variations in F2 may be a cause of susceptibility to ischemic stroke (ISCHSTR) [MIM:601367; also known as cerebrovascular accident or cerebral infarction. A stroke is an acute neurologic event leading to death of neural tissue of the brain and resulting in loss of motor, sensory and/or cognitive function. Ischemic strokes, resulting from vascular occlusion, is considered to be a highly complex disease consisting of a group of heterogeneous disorders with multiple genetic and environmental risk factors.[13] Defects in F2 are the cause of thrombophilia due to thrombin defect (THPH1) [MIM:188050. It is a multifactorial disorder of hemostasis characterized by abnormal platelet aggregation in response to various agents and recurrent thrombi formation. Note=A common genetic variation in the 3-prime untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increased risk of venous thrombosis. Defects in F2 are associated with susceptibility to pregnancy loss, recurrent, type 2 (RPRGL2) [MIM:614390. A common complication of pregnancy, resulting in spontaneous abortion before the fetus has reached viability. The term includes all miscarriages from the time of conception until 24 weeks of gestation. Recurrent pregnancy loss is defined as 3 or more consecutive spontaneous abortions.[14] FunctionTHRB_HUMAN Thrombin, which cleaves bonds after Arg and Lys, converts fibrinogen to fibrin and activates factors V, VII, VIII, XIII, and, in complex with thrombomodulin, protein C. Functions in blood homeostasis, inflammation and wound healing.[15] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedPrevious studies have suggested that thrombin interacts with integrins in endothelial cells through its RGD (Arg-187, Gly-188, Asp-189) sequence. All existing crystal structures of thrombin show that most of this sequence is buried under the 220-loop and therefore interaction via RGD implies either partial unfolding of the enzyme or its proteolytic digestion. Here, we demonstrate that surface-absorbed thrombin promotes attachment and migration of endothelial cells through interaction with alpha(v)beta(3) and alpha(5)beta(1) integrins. Using site-directed mutants of thrombin we prove that this effect is mediated by the RGD sequence and does not require catalytic activity. The effect is abrogated when residues of the RGD sequence are mutated to Ala and is not observed with proteases like trypsin and tissue-type plasminogen activator, unless the RGD sequence is introduced at position 187-189. The potent inhibitor hirudin does not abrogate the effect, suggesting that thrombin functions through its RGD sequence in a non-canonical conformation. A 1.9-Angstroms resolution crystal structure of free thrombin grown in the presence of high salt (400 mm KCl) shows two molecules in the asymmetric unit, one of which assumes an unprecedented conformation with the autolysis loop shifted 20 Angstroms away from its canonical position, the 220-loop entirely disordered, and the RGD sequence exposed to the solvent. Thrombin functions through its RGD sequence in a non-canonical conformation.,Papaconstantinou ME, Carrell CJ, Pineda AO, Bobofchak KM, Mathews FS, Flordellis CS, Maragoudakis ME, Tsopanoglou NE, Di Cera E J Biol Chem. 2005 Aug 19;280(33):29393-6. Epub 2005 Jul 5. PMID:15998637[16] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|