1z70

From Proteopedia
Jump to navigation Jump to search

1.15A resolution structure of the formylglycine generating enzyme FGE1.15A resolution structure of the formylglycine generating enzyme FGE

Structural highlights

1z70 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.15Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

SUMF1_HUMAN Defects in SUMF1 are the cause of multiple sulfatase deficiency (MSD) [MIM:272200. MSD is a clinically and biochemically heterogeneous disorder caused by the simultaneous impairment of all sulfatases, due to defective post-translational modification and activation. It combines features of individual sulfatase deficiencies such as metachromatic leukodystrophy, mucopolysaccharidosis, chondrodysplasia punctata, hydrocephalus, ichthyosis, neurologic deterioration and developmental delay. Inheritance is autosomal recessive.[1] [2] [3] [4]

Function

SUMF1_HUMAN Using molecular oxygen and an unidentified reducing agent, oxidizes a cysteine residue in the substrate sulfatase to an active site 3-oxoalanine residue, which is also called C(alpha)-formylglycine. Known substrates include GALNS, ARSA, STS and ARSE.[5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Sulfatases are a family of enzymes essential for the degradation of sulfate esters. Formylglycine is the key catalytic residue in the active site of sulfatases and is generated from a cysteine residue by FGE, the formylglycine-generating enzyme. Inactivity of FGE owing to inherited mutations in the FGE gene results in multiple sulfatase deficiency (MSD), which leads to early death in infants. Human FGE was crystallized in the presence of traces of the protease elastase, which was absolutely essential for crystal growth, and the structure of FGE was determined by molecular replacement. Before this model was completed, the FGE structure was re-determined by SAD phasing using in-house data based on the anomalous signal of two calcium ions bound to the native enzyme and intrinsic S atoms. A 14-atom substructure was determined at 1.8 A resolution by SHELXD; SHELXE was used for density modification and phase extension to 1.54 A resolution. Automated model building with ARP/wARP and refinement with REFMAC5 yielded a virtually complete model without manual intervention. The minimal data requirements for successful phasing and the relative contributions of the Ca and S atoms are discussed and compared with the related FGE paralogue, pFGE. This work emphasizes the usefulness of de novo phasing using weak anomalous scatterers and in-house data.

De novo calcium/sulfur SAD phasing of the human formylglycine-generating enzyme using in-house data.,Roeser D, Dickmanns A, Gasow K, Rudolph MG Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1057-66. Epub 2005, Jul 20. PMID:16041070[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 2003 May 16;113(4):445-56. PMID:12757706
  2. Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K. Multiple sulfatase deficiency is caused by mutations in the gene encoding the human C(alpha)-formylglycine generating enzyme. Cell. 2003 May 16;113(4):435-44. PMID:12757705
  3. Cosma MP, Pepe S, Parenti G, Settembre C, Annunziata I, Wade-Martins R, Di Domenico C, Di Natale P, Mankad A, Cox B, Uziel G, Mancini GM, Zammarchi E, Donati MA, Kleijer WJ, Filocamo M, Carrozzo R, Carella M, Ballabio A. Molecular and functional analysis of SUMF1 mutations in multiple sulfatase deficiency. Hum Mutat. 2004 Jun;23(6):576-81. PMID:15146462 doi:10.1002/humu.20040
  4. Schlotawa L, Steinfeld R, von Figura K, Dierks T, Gartner J. Molecular analysis of SUMF1 mutations: stability and residual activity of mutant formylglycine-generating enzyme determine disease severity in multiple sulfatase deficiency. Hum Mutat. 2008 Jan;29(1):205. PMID:18157819 doi:10.1002/humu.9515
  5. Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A. The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell. 2003 May 16;113(4):445-56. PMID:12757706
  6. Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T. Molecular characterization of the human Calpha-formylglycine-generating enzyme. J Biol Chem. 2005 Apr 15;280(15):14900-10. Epub 2005 Jan 18. PMID:15657036 doi:M413383200
  7. Roeser D, Dickmanns A, Gasow K, Rudolph MG. De novo calcium/sulfur SAD phasing of the human formylglycine-generating enzyme using in-house data. Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1057-66. Epub 2005, Jul 20. PMID:16041070 doi:10.1107/S0907444905013831

1z70, resolution 1.15Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA