1wr6
Crystal structure of GGA3 GAT domain in complex with ubiquitinCrystal structure of GGA3 GAT domain in complex with ubiquitin
Structural highlights
FunctionGGA3_HUMAN Plays a role in protein sorting and trafficking between the trans-Golgi network (TGN) and endosomes. Mediates the ARF-dependent recruitment of clathrin to the TGN and binds ubiquitinated proteins and membrane cargo molecules with a cytosolic acidic cluster-dileucine (AC-LL) motif.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedGGA (Golgi-localizing, gamma-adaptin ear domain homology, ARF-binding) proteins, which constitute a family of clathrin coat adaptor proteins, have recently been shown to be involved in the ubiquitin-dependent sorting of receptors, through the interaction between the C-terminal three-helix-bundle of the GAT (GGA and Tom1) domain (C-GAT) and ubiquitin. We report here the crystal structure of human GGA3 C-GAT in complex with ubiquitin. A hydrophobic patch on C-GAT helices alpha1 and alpha2 forms a binding site for the hydrophobic Ile44 surface of ubiquitin. Two distinct orientations of ubiquitin Arg42 determine the shape and the charge distribution of ubiquitin Ile44 surface, leading to two different binding modes. Biochemical and NMR data strongly suggest another hydrophobic binding site on C-GAT helices alpha2 and alpha3, opposite to the first binding site, also binds ubiquitin although weakly. The double-sided ubiquitin binding provides the GAT domain with higher efficiency in recognizing ubiquitinated receptors for lysosomal receptor degradation. Molecular mechanism of ubiquitin recognition by GGA3 GAT domain.,Kawasaki M, Shiba T, Shiba Y, Yamaguchi Y, Matsugaki N, Igarashi N, Suzuki M, Kato R, Kato K, Nakayama K, Wakatsuki S Genes Cells. 2005 Jul;10(7):639-54. PMID:15966896[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|