1vgh
HEPARIN-BINDING DOMAIN FROM VASCULAR ENDOTHELIAL GROWTH FACTOR, NMR, 20 STRUCTURESHEPARIN-BINDING DOMAIN FROM VASCULAR ENDOTHELIAL GROWTH FACTOR, NMR, 20 STRUCTURES
Structural highlights
DiseaseVEGFA_HUMAN Defects in VEGFA are a cause of susceptibility to microvascular complications of diabetes type 1 (MVCD1) [MIM:603933. These are pathological conditions that develop in numerous tissues and organs as a consequence of diabetes mellitus. They include diabetic retinopathy, diabetic nephropathy leading to end-stage renal disease, and diabetic neuropathy. Diabetic retinopathy remains the major cause of new-onset blindness among diabetic adults. It is characterized by vascular permeability and increased tissue ischemia and angiogenesis. FunctionVEGFA_HUMAN Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth. Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors, heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145. Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does not activate angiogenesis and inhibits tumor growth.[1] [2] [3] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedBACKGROUND: Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and is a potent angiogenic and vascular permeabilizing factor. VEGF is also an important mediator of pathological angiogenesis associated with cancer, rheumatoid arthritis and proliferative retinopathy. The binding of VEGF to its two known receptors, KDR and Flt-1, is modulated by cell-surface-associated heparin-like glycosaminoglycans and exogenous heparin or heparan sulfate. Heparin binding to VEGF165, the most abundantly expressed isoform of VEGF, has been localized to the carboxy-terminal 55 residues; plasmin cleavage of VEGF165 yields a homodimeric 110-residue amino-terminal receptor-binding domain (VEGF110) and two 55-residue carboxy-terminal heparin-binding fragments. The endothelial cell mitogenic potency of VEGF110 is decreased significantly relative to VEGF165, indicating that the heparin-binding domains are critical for stimulating endothelial cell proliferation. RESULTS: The solution structure of the 55-residue heparin-binding domain of VEGF165 has been solved using data from two-dimensional homonuclear and three-dimensional heteronuclear NMR spectroscopy. The structure has two subdomains, each containing two disulfide bridges and a short two-stranded antiparallel beta sheet; the carboxy-terminal subdomain also contains a short alpha helix. Hydrophobic interactions are limited to sidechains packing against the disulfide bridges. CONCLUSIONS: The heparin-binding domain of VEGF has no significant sequence or structural similarity to any known proteins and thus represents a novel heparin-binding domain. Most of the positively charged amino acid sidechains are localized on one side of the carboxy-terminal subdomain or on an adjacent disordered loop in the amino-terminal subdomain. The observed distribution of surface charges suggests that these residues constitute a heparin interaction site. Solution structure of the heparin-binding domain of vascular endothelial growth factor.,Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA Structure. 1998 May 15;6(5):637-48. PMID:9634701[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|